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Abstract— Segmentation and mapping of planar building
facades (PBFs) can increase a robot’s ability of scene under-
standing and localization in urban environments which are
often quasi-rectilinear and GPS-challenged. PBFs are basic
components of the quasi-rectilinear environment. We propose a
passive vision-based PBF segmentation and mapping algorithm
by combining both appearance and geometric constraints.
We propose a rectilinear index which allows us to segment
out planar regions using appearance data. Then we combine
geometric constraints such as reprojection errors, orientation
constraints, and coplanarity constraints in an optimization
process to improve the mapping of PBFs. We have implemented
the algorithm and tested it in comparison with state-of-the-art.
The results show that our method can reduce the angular error
of scene structure by an average of 82.82%.

I. INTRODUCTION

Vision is important for robots navigating in GPS-
challenged environments. Since such environments are
mostly man-made urban environments, they are often quasi-
rectilinear. Planar building facades (PBFs) can be viewed
as basic components of a quasi-rectilinear environment. For
better scene understanding and the establishment of high-
level landmarks for robust motion estimation, it is important
to detect PBFs. At the first sight, PBFs may be detected using
homographies between two images due to their geometric
relationship. However, the plane homography can be difficult
to be obtained when a PBF is far away relative to the baseline
distance between the two camera views. This often happens
when a monocular robot takes an image with a small step
or when the baseline of a stereo camera is limited by the
physical size of the robot. Also, the non-planar objects in
the scene often bias the homography estimation.

We propose a method that uses both geometric and ap-
pearance information to segment PBFs and uses geometric
constraints to refine the 3D PBF mapping. Fig. 1 partially
illustrates our approach. The contribution of this work is
twofold: 1) we propose a rectilinear index metric which
allows us to identify building regions from its surroundings.
Then we identify homographies using vanishing points as
constraints for better planar surface detection, and 2) we
combine three geometric constraints, i.e. the reprojection
errors, orientation constraints, and coplanarity constraints, in
an optimization process to improve the 3D mapping of the
building structure. We have tested our method in physical
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Fig. 1: Building facade segmentation using rectilinear properties
(Best viewed in color). (a) Detected line segments on an image.
(b) Segmented homogeneous regions (color-coded). (c) Ground
line segments removed below the (green) horizontal vanishing line.
(d) Heat map visualization of rectilinearity indices. Regions with
warmer color indicate rectilinear regions.

experiments. We compare our algorithm with the state-of-
the-art J-linkage-based PBF detection [1] and reprojection
error-based 3D mapping. The results show that our method
outperforms the J-linkage-based approach by an average of
45.27% precision increase and reduces the angular error of
the reprojection error-based 3D mapping by an average of
82.82%.

II. RELATED WORK

Reconstructing PBFs in a man-made environment has been
widely studied for visualization and robot navigation. For
visualization, computer graphics research has focused on
reconstructing complex and accurate architectural models
using polygonal meshes. This usually requires either repeti-
tive scene scanning or range finders that can produce dense
measurements with high precision. Here we do not focus
on fully reconstructing the robot’s environment since this is
often not the main task in robot navigation.

In robot navigation, when a range finder is used, planes can
be mapped by directly fitting a 3D plane model to the depth
data. For example, in [2], a real-time plane segmentation
algorithm is developed for noisy 3D point clouds acquired
by less accurate and portable LIDAR. Recently, as RGB-
D sensors became more available, a number of researchers
have used these sensors to map planar surfaces in an indoor
environment [3], [4], [5]. Delmerico et al. [6] present a
stereo-based building facade mapping method which fits
a plane model in the 3D disparity space. In their facade
detection step, local surface normals are first computed
for each point in 3D with a Markov random field model.
Then, random sample consensus (RANSAC) [7] is used to
progressively cluster these points with the same plane normal
one plane at a time. Although they do not use a range finder,
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Fig. 2: System diagram

their plane mapping method is similar to the range finder-
based methods in that the plane is directly fitted in the 3D
space. Our work only uses a passive vision sensor which
does not provide depth measures. However, this allows us
to explore appearance data to segment planar surfaces in the
2D domain prior to estimation of building facades in 3D so
that noises from non-planar objects can be reduced.

For vision-based navigation, detection of planes in the 2D
domain precedes the 3D mapping. Plane detection in 2D
is usually done by using the homography constraint. Since
RANSAC is not suited to detect multiple models, Fouhey
et al. [1] use an agglomerative clustering technique, called
J-linkage [8], to detect multiple building facades from two
images using the homography model. Baillard and Zisser-
man [9] propose a method that reconstructs piecewise planar
building rooftops from multiple aerial images using half-
planes and their associated homographies. Zhou and Li [10]
develop a modified expectation-maximization (EM) algo-
rithm that uses the homography constraint to classify ground-
plane pixels and non-ground plane pixels for a mobile robot.
Other existing methods use appearance information to help
planar surface detection and mapping. Li and Birchfield [11]
use an image-based segmentation method to detect ground
planes in an indoor corridor. In their method, vertical and
horizontal line segments are used to find the wall-floor
boundary. Visual mapping has also been done using learned
structural priors from appearance data [12]. In our work, we
use both geometric and appearance information to help the
homography detection process.

Previously, a building facade mapping method was pro-
posed in [13] where they use a multi-layered feature
graph [14], [15] for robust estimation of building facades.
For better reconstruction results, the reconstruction process
enforces geometric constraints such as parallelism and copla-
narity. In this work, we focus on extracting coplanar features
using appearance data and use different cost functions for the
coplanarity constraint.

III. PROBLEM STATEMENT

A. Notations and Assumptions: We denote two input
images by I and I′, where the prime symbol (′) denotes the
entities of the second image. Feature points in projective
space P2 and P3 are denoted as x and X, respectively.
Similarly, e ∈ P2 and E ∈ P3 denote line-segment endpoints.
We define line segments by their two endpoints, i.e. s :=
(e1,e2) and S := (E1,E2). A plane in P3 is defined by
Π := [nT,d]T, where n is the plane normal and d/‖n‖ is the
distance from the plane to the origin. Formally, we define:

Definition 1 (PBF): A PBF in I is defined as a 3-tuple
φ :=(X ,S,G), where X and S denote a set of nx feature points
{xi}nx

i=1 and a set of ns line segments {si}ns
i=1, respectively,

lying in pixel region G. In 3D world coordinates, a PBF is
defined by Φ := (X ,S,Π), where X and S denote a set of
feature points {Xi}nx

i=1 and a set of line segments {Si}ns
i=1,

respectively, which are associated to plane Π.
We make the following assumptions in our approach.

• Lens distortion is removed from I and I′.
• The intrinsic camera parameter matrices K and K′ are

known from pre-calibration.
• The baseline distance is known and nonzero.

B. Problem Definition:
Problem 1: Given I and I′, extract a set of n f correspond-

ing PBFs {φi}
n f
i=1 and {φ ′i }

n f
i=1 and map their 3D positions

{Φi}
n f
i=1 relative to the cameras. Also, estimate the extrinsic

camera parameters of rotation R′ and translation t′.

IV. SYSTEM DESIGN

Fig. 2 shows an overview of our system which consists of
three main blocks: 1) feature detection and matching, 2) PBF
segmentation, and 3) 3D structure estimation. The second
and third blocks are the main contribution of this paper.

Given images I and I′, the first block extracts geometric
primitives, such as feature points and line segments, along
with regions with homogeneous appearance. Feature points



are detected and matched using scale-invariant feature trans-
form (SIFT) [16], and line segments detected by the Line
Segment Detector [17] are matched using the method pro-
posed by Fan et al. [18] which uses keypoint matches. From
the raw line segments, vanishing points are estimated us-
ing [19]. We use only vanishing points v where the vanishing
direction K−1v and R′K′−1v′ match. Then, vanishing lines are
computed from each pair of vanishing points. For appearance
data, we use a graph-based segmentation algorithm in [20] to
extract regions with homogeneous appearance (see Fig. 1b).

The second block uses the geometric and appearance data
from above to detect corresponding 2D building facades
{φi} ↔ {φ ′i } using a two-step approach. In the first step,
rectilinear building regions are segmented out using both
line segments and homogeneous appearance regions (Sec. V-
A). Then, the next step detects each PBF by homography
clustering using only the feature points and line segments
that lie on the segmented building region (Sec. V-B).

The final block estimates the 3D structure of the building
by estimating the set of PBFs {Φi}. The camera pose, R′

and t′, and the 3D positions of the feature points and line
segments are first initialized. Then, the parameters of {Φi}
are further optimized using geometric constraints (Sec. VI).

V. PBF SEGMENTATION

Now we describe how a set of PBFs {φi} are segmented
from a 2D image using both geometric and appearance
data. When detecting multiple PBFs using a homography-
based clustering approach such as in [1], two problems
can occur: 1) features from non-building objects will clutter
the homographies and 2) facade boundaries become more
ambiguous when the building is relatively far away compared
to the baseline distance. These problems cannot be solved by
merely adjusting the parameters of the clustering technique.
Here, we propose a two-step approach, i.e. the building
region segmentation step and the planar facade extraction
step (Box 2 in Fig. 2), where the above two issues are
addressed step by step. The first step extracts the target
building region to suppress the non-building objects by
combining geometric and appearance data. In the second
step, to avoid ambiguous boundaries, homography clustering
is applied to each group of feature points with the same
horizontal vanishing direction.

A. Building Region Segmentation

Let {gi}
ng
i=1 be the set of ng homogeneous pixel regions

segmented from I using the algorithm in [20]. Since buildings
are usually characterized by their rectilinear structure, we
use line segments to determine which region gi belongs to
a PBF. We use the following steps (Boxes 2.1-2.5 in Fig. 2)
to segment the building region.

Remove ground line segments. When an image is taken
from a ground robot, most of the line segments below the
horizontal vanishing line belong to the ground. Although
this is not valid for near objects, in many cases, this is
true for line segments on a distant building. Suppose a
horizontal vanishing point vi = [xi,yi,1]T is counterclockwise
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Fig. 3: RI density threshold. The solid (blue) line is the estimated RI
density, and the dotted (red) line is its derivative. Segmentation results are
shown for (a) below selected threshold, (b) selected threshold, and (c) above
selected threshold.

from another horizontal vanishing point v j = [x j,y j,1]T with
respect to the zenith vanishing point vz = [xz,yz,1]T, i.e.∣∣ xi−xz x j−xz

yi−yz y j−yz

∣∣< 0. Let w denote the vanishing line computed
by vi×v j. Then we remove line segments (e1,e2) that satisfy
the condition eT1 w > 0∨eT2 w > 0. Fig. 1c shows an example.
After removing ground line segments, we use the remaining
line segments to extract rectilinear regions as follows.

Compute rectilinearity of regions. If a region gi contains
a group of line segments, it is a strong cue for gi being a
rectilinear region. To measure the rectilinearity of a region
we define the rectilinearity index (RI) as follows:

Definition 2 (RI): Suppose bi is the set of boundary pixel
coordinates of region gi. The RI of gi is measured by finding
the nearest line segments to each pixel coordinate p∈ bi and
computing their average distance by

ri =
1
|bi| ∑

p∈bi

d(p,sp), (1)

where sp is the nearest line segment to p, and d(p,sp) is the
shortest distance from p to line segment sp.
A smaller RI indicates a higher rectilinearity. Fig. 1d shows
an example of computing the RIs. If none of the regions have
an RI smaller than a certain threshold, we determine that the
view does not contain a distinguishable rectilinear structure.

Estimate RI density. After computing the RI for each
region, we use kernel density estimation to compute the
density of the RIs. The RI density can be computed by

p̂(r) =
1

nghopt

ng

∑
i=1

K
(

r− ri

hopt

)
(2)

where K is a normalized Gaussian kernel K(x)= e−x2/2/
√

2π

and hopt is the optimum kernel bandwidth estimated using
leave-one-out cross-validation. The example in Fig. 3 shows
a typical shape of the density estimate when the image
contains a rectilinear building structure. A peak exists where
the RI is small.

Compute RI threshold. To extract regions g that belong
to a PBF, we segment the peak of the RI density using a
threshold. Instead of using a fixed threshold, we want to find
the rectilinear regions based on the estimated distribution.
Hence, we set the second zero-crossing of the first derivative
of the kernel density estimate

p̂′(r) =
1

nghopt

ng

∑
i=1

K′
(

r− ri

hopt

)
(3)



(c)(a) (b)

Fig. 4: Extracting PBFs (Best viewed in color). (a) Feature points
associated to vanishing direction of neighboring (color-coded) horizontal
line segments. (b) Homography clustering applied to feature points with
same vanishing direction. (c) Convex hull for each homography cluster.

as our threshold. An example result is shown in Fig. 3b.
Extract building feature points. After the building region

is segmented, we extract the feature points that lie on the
building region.

B. Planar Facade Extraction

In the second step, our goal is to detect a set of cor-
responding PBFs {φi} ↔ {φ ′i } by clustering feature points
using homographies and vanishing directions. Since a PBF
should contain only one horizontal vanishing direction, the
horizontal vanishing direction is an important cue to separate
PBFs. Instead of applying J-linkage to the entire feature
points that would result in ambiguous boundary problems,
we apply J-linkage to each group of features that have the
same horizontal vanishing direction. We use the following
steps (Box 2.6-2.8 in Fig. 2) to separate PBFs.

Label feature points. We label each feature point x with
a horizontal vanishing direction. Let sh = (eh

1,e
h
2) be a line

segment associated to a horizontal vanishing point and lh =
eh

1×eh
2, where eh

1 is counterclockwise from eh
2 with respect to

the zenith vanishing point vz. For each sh, we compute two
vertical lines lv1 = vz×eh

1 and lv2 = vz×eh
2. Feature point x is

then assigned with the vanishing direction of the nearest sh

that satisfies xTlh < 0∧ (xTlv1)(x
Tlv2) < 0. Fig. 4a shows an

example after feature points are labeled with their horizontal
plane direction.

Homography clustering. After feature points are associ-
ated with a horizontal vanishing direction, we apply homog-
raphy clustering using J-linkage on the feature points with the
same horizontal vanishing direction. This avoids ambiguities
between facade boundaries and separates the facades that are
in different horizontal directions. Fig. 4b shows an example
of the clustering on one horiztonal vanishing direction.

Segment planar facades. Finally, a convex hull is com-
puted for the set of feature points that belong to the same
cluster obtained in the previous step (see Fig. 4c). The pixel
region in this convex hull is set to G. The feature points
and line segments that lie in G are denoted as X and S,
respectively.

Thus, we have the three components X , S, and G for a PBF
φ in an image I. The algorithm for the PBF segmentation and
its expected running time are summarized below. Hence, the
overall computational complexity of Algorithm 1 is O(n3

x +
ns(nx +ng)+n2

g).

VI. 3D STRUCTURE ESTIMATION

After a set of corresponding PBFs {φi}↔{φ ′i } is extracted
from two views, we simultaneously estimate the camera
pose and 3D PBF positions. The camera pose, R′ and t′, is
initialized using the standard steps in [21]; the fundamental

Algorithm 1 PBF Segmentation

Input: {xi}nx
i=1, {si}ns

i=1, {gi}
ng
i=1, w

Output: {φi}
n f
i=1

1: remove ground line segments under w . O(ns)
2: compute RI for all {gi} . O(nsng)
3: estimate RI density using cross-validation . O(n2

g)
4: extract building feature points . O(nx)
5: label {xi} by horizontal direction . O(nsnx)
6: {Xi}← cluster feature points by homography . O(n3

x)
7: {φi}← segment planar facades . O(nx lognx)

matrix F is fit to keypoint matches using RANSAC; the
camera pose R′ and t′ are obtained by decomposing the
essential matrix E= K′TFK. The 3D PBF positions {Φi} are
initialized by triangulating the set of feature points and the
set of line segment endpoints. The plane is initialized by
fitting Π to the triangulated feature points and line segment
endpoints.

To refine the initial estimates using geometric constraints,
our goal is to solve

argmin
R′,t′,{Φi}

Jrep + Jori + Jcop, (4)

where Jrep, Jori, and Jcop are the cost terms for the reprojec-
tion error, orientation constraint, and coplanarity constraint,
respectively. Each cost term Jrep, Jori, and Jcop is defined in
the following subsections.

A. Reprojection Error: The reprojection error Jrep in (4) is
minimized when the projections of the estimated 3D points
and line segments are close to their image measurements.
We compute the reprojection error by

Jrep =
Jx

rep

λ x
rep

+
Jl

rep

λ l
rep

+
Je

rep

λ e
rep

, (5)

where Jx
rep, Jl

rep, and Je
rep are the reprojection errors for feature

points, lines, and line-segment endpoints, respectively. The
λ values for each cost term will be described later.

To compute Jx
rep, we use the standard reprojection error

in [21]. Let X be the set of feature points. The reprojection
error over X is defined by Jx

rep = ∑x∈X d(x, x̂)2 + d(x′, x̂′)2

where d(x, x̂) is the distance between the observation x and
estimation x̂ in image coordinates.

We use the line reprojection error in [22] to compute Jl
rep.

The cost function for the set of lines S is

Jl
rep = ∑

s∈S
d(ê1,p1)d(p1,p3)+d(ê2,p2)d(p2,p3)

+d(ê′1,p
′
1)d(p

′
1,p
′
3)+d(ê′2,p

′
2)d(p

′
2,p
′
3), (6)

where p1 and p2 are the projections of the estimated end-
points ê1 and ê2 on the line e1× e2. The point p3 is the
intersection of the estimated line ê1× ê2 and the observed
line e1× e2. If the reprojection error for lines is used alone,
the estimated line segments would “grow” or “shrink” during
the estimation process. To avoid this, we also apply the
reprojection error to line-segment endpoints by

Je
rep = ∑

s∈S
d(e1, ê1)

2+d(e′1, ê
′
1)

2+d(e2, ê2)
2+d(e′2, ê

′
2)

2. (7)



B. Orientation Constraint The 3D orientation of each line
segment and plane can be computed since their associated
vanishing direction is known. To constrain the overall orien-
tation of the building structure, we minimize the following
cost function

Jori =
Jv

ori
λ v

ori
+

Jn
ori

λ n
ori

+
Jp

ori
λ

p
ori
, (8)

where Jv
ori and Jn

ori constrain the line segment orientation and
Jp

ori constrains the plane orientation.
The first term in (8) makes each line segment S parallel

to its associated vanishing direction by Jv
ori = ∑i ∑S∈S ‖d̂s×

di‖2, where d̂s is the direction of the line segment S and
di is the vanishing direction of the vanishing point vi. As in
the line reprojection error, the above cost function represents
the area between the line segment direction vector and the
vanishing direction vector. Each line segment direction d̂s
is also enforced to be perpendicular to its associated plane
normal n̂ by Jn

ori =∑i ∑S∈S (d̂s · n̂i)
2. The above cost function

prevents line segments becoming perpendicular to the plane
due to the coplanarity constraint in (10), which is described
in the next section. Each plane normal n̂i is constrained so
that it is perpendicular to the associated horizontal vanishing
direction dh and vertical vanishing direction dz using Jp

ori =

∑i(dh · n̂i)
2 +(dz · n̂i)

2.
C. Coplanarity Constraint: A strong constraint to reduce

the depth ambiguity of 3D points and line segments is the
coplanarity constraint. The coplanarity constraint for feature
points and line segments is defined by

Jcop =
Jx

cop

λ x
cop

+
Js

cop

λ s
cop

, (9)

where Jx
cop, and Js

cop are the cost terms for feature points and
line-segment endpoints, respectively.

We compute Jx
cop by Jx

cop = ∑i ∑X∈Xi d⊥(X̂,Π̂i)
2 where

d⊥(X̂,Π̂i) is the perpendicular distance from point X̂ to plane
Π̂i. For line segments, we enforce coplanarity by minimizing
the area between the line segment and the plane by

Js
cop = ∑

i
∑
S∈S

(d⊥(Ê1,Π̂i)+d⊥(Ê2,Π̂i))d(P1,P2), (10)

where P1 and P2 are projected endpoints of the line segment
S on plane Πi. The area between a line segment and plane
Πi becomes zero when they are coplanar.

We use the Levenberg-Marquardt algorithm to solve our
non-linear optimization problem in (4). To balance the three
cost terms in (4), as in [23], we set each weight λ as the
initial value of its corresponding J so that the initial cost of
Jrep + Jori + Jcop = 8.

VII. EXPERIMENTS

To measure the performance of our proposed method, we
have tested the method on real data. We have taken a pair of
images of 20 different buildings on Texas A&M University
campus. Two tests have been conducted:

A. PBF Segmentation Test: We have measured the per-
formance of each step described in Sec. V. For the build-
ing region segmentation step (Sec. V-A), we have counted
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Fig. 5: Sensitivity and specificity of PBF region detection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample no.

J-linkage only

proposed

Fig. 6: Precision comparison of PBF detection

the number of true-positive (TP), true-negative (TN), false-
positive (FP), and false-negative (FN) feature points after
the building region segmentation has been performed. The
ground-truth was obtained by manually examining whether
each feature point was on a building facade. Fig. 5 shows the
sensitivity (TP/(TP+FN)) and specificity (TN/(FP+TN))
of our method. Next, for the planar facade detection step
(Sec. V-B), we have computed the precision (TP/(TP+FP)).
We have compared the precision of our proposed method
with a base-line method, i.e. the J-linkage in [8] which uses
J-linkage directly on the image without use of the horizontal
vanishing direction information. It is worth noting that our
method also uses J-linkage as a sub-step. The parameters
for the J-linkage step are the same in both methods. Fig. 6
shows that our proposed method is always better. The average
precision increase over the J-linkage method is 45.27%.

B. PBF Mapping Test: We have compared our proposed
method with a base-line method which minimizes the stan-
dard reprojection error in structure estimation. Since the
camera baseline distance is relatively small compared to the
building distance, the camera positional error is not signif-
icant in either method. Hence, we present two measures,
(1) the PBF depth error and (2) the PBF angular error, to
illustrate the performance of our proposed method.

First, we measure the depth error of the mapped building.
Each image has been taken so that the principal axis passes
through the intersection of the two primary PBFs, i.e. the
building corner. We set the baseline distance to be 1/60 of the
distance to the building corner. Suppose lk is the intersection
of the estimated 3D planes Π̂i and Π̂ j of PBFs, and let Πz
be the plane passing through the camera center C with the
normal vector dx×dz, where dx = [1,0,0]T and dz = K−1vz.
We measure the depth error of a building corner lk by
εdepth =

∣∣d̄− 1
2 (d⊥(Q̂1,Πz)+d⊥(Q̂2,Πz))

∣∣ where the ground-
truth depth d̄ is measured from a top-down view aerial map
and a precision laser ranger (BOSCH GLR225) with 1 mm
accuracy. If P is the set of feature points Xi ∪X j ∪Ei ∪E j
of Φi and Φ j, then the points Q̂1 and Q̂2 are the intersec-
tions of lk with the plane parallel to Πz which passes the
points maxP∈P(PTdz)·dz and minP∈P(PTdz)·dz, respectively.
Fig. 7a shows that the overall depth error decreases after the
refinement. In fact, the average depth error is reduced from
22.39 to 8.95, a 60% reduction.
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Fig. 7: Comparison of the reprojection error-based 3D estimation and that
of the proposed method.

Next, to measure how well the building structure is re-
covered, we measure the angular error of PBFs by εangle =∣∣θ̄a− θ̂a

∣∣ , where θ̄a is the ground-truth angle between
the two primary PBFs measured from a top-down view
aerial map and the same high precision laser ranger, and
θ̂a is the estimated angle which is computed by θ̂a =
cos−1

(
n̂T

i n̂ j/(‖n̂i‖‖n̂ j‖)
)
. where ni and n j are plane normal

vectors for Π̂i and Π̂ j, respectively. Fig. 7b shows that
the pairwise angular errors are reduced using our proposed
method. The average angular error reduction is 82.82%.

VIII. CONCLUSION AND FUTURE WORK

We reported a novel algorithm for PBF segmentation
and 3D estimation. We proposed a new RI to distinguish
building regions based on homogeneous region detection
results. We combined the reprojection errors, orientation
constraints, and coplanarity constraints as cost functions in
an optimization process to improve the 3D estimation of the
building structure. In physical experiments, we compared
our algorithm with state-of-the-art J-linkage-based facade
detection. The results showed that our method increases
precision in segmentation and reduces depth and angular
errors in 3D estimation. In the future, we will extend this
work to a high-level landmark-based SLAM approach where
PBF will be used as landmarks. We will also consider other
sensors such as inertial sensors and/or depth sensors to
address scale drift issues.
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