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Abstract— To facilitate scene understanding and robot navi-
gation in a modern urban area, we design a multilayer feature
graph (MFG) based on two views from an on-board camera.
The nodes of an MFG are features such as scale invariant
feature transformation (SIFT) feature points, line segments,
lines, and planes while edges of the MFG represent different ge-
ometric relationships such as adjacency, parallelism, collinear-
ity, and coplanarity. MFG also connects the features in two
views and the corresponding 3D coordinate system. Building
on SIFT feature points and line segments, MFG is constructed
using feature fusion which incrementally, iteratively, and exten-
sively verifies the aforementioned geometric relationships using
random sample consensus (RANSAC) framework. Physical
experiments show that MFG can be successfully constructed
in urban area and the construction method is demonstrated to
be very robust in identifying feature correspondence.

I. INTRODUCTION

When a mobile robot travels in a modern urban envi-
ronment, the robot often needs visual signals from its on-
board camera to assist navigation. A typical modern urban
environment is usually rectilinear and consists of many
structured objects and distinctive features such as vertical
walls, parallel edges, orthogonal planes, etc. Extracting such
features from video frames to form a quick scene understand-
ing can directly benefit navigation tasks such as localization,
mapping, obstacle avoidance, and motion planning.

Here we design a multilayer feature graph (MFG) to
facilitate the scene understanding in urban area. Nodes of
an MFG are features such as scale invariant feature trans-
formation (SIFT) feature points, line segments, lines, and
planes while edges of the MFG represent different geometric
relationships such as adjacency, parallelism, collinearity, and
coplanarity. MFG also connects the features in two views
and the corresponding 3D world coordinate system. Fig. 1
illustrates the MFG in the 3D world coordinate system.
We design an MFG construction method using a feature
fusion process which incrementally, iteratively, and exten-
sively verifies the aforementioned geometric relationships
using random sample consensus (RANSAC) framework.

We have implemented MFG construction algorithm and
tested it in physical experiments. Results show that MFG
can be successfully constructed from raw image data. Since
the process utilizes multiple types of geometric relationships,
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Fig. 1. An illustration of the multilayer feature graph. Based on vanishing
points, building facades, parallel line/line segment groups, and feature
points, an MFG is a feature-based scene reconstruction which focuses on
robot navigation needs. The camera frame at the top left corner is one of
the input two views and the output is the MFG.

the feature correspondence outcome is significantly improved
over existing feature matching methods. As an important part
of MFG, the algorithm is able to detect all primary vertical
planes with reasonable accuracy.

II. RELATED WORK

Our MFG is a novel scene understanding and knowledge
representation method for vision-based robot navigation in
urban area. A mobile robot usually has different ways of
constructing and representing its surrounding environments,
which usually depend on different sensors, 3D reconstruction
schemes, and feature matching methods.

The most common sensors for robot navigation include
sonar arrays [1], laser range finders [2], [3], depth cam-
eras [4], regular cameras [5]–[9], or their combinations [10],
[11]. Simultaneous localization and mapping (SLAM) is the
typical framework employed by robot navigation [12] to
make decisions based on the sensory input. In a SLAM
framework, the physical world is represented as a collection
of “landmarks.” For example, landmarks are point clouds if a
laser ranger finder or a depth camera is the primary sensor. In
vision-based SLAM, SIFT feature points or its variants [5],
[6], [13] and line features [7]–[9] are often employed as
landmarks. Landmarks can be viewed as a rudimentary way
of scene understanding which serves SLAM purposes well.
Our MFG complements SLAM approaches because a better
scene understanding method can also increase the robustness
of localization results and make it easy to utilize prior
knowledge such as existing maps.

In computer vision and graphics field, 3D reconstruction



has been a very popular topic for research as well as com-
mercial applications. Sensors used there also include laser
range finder [14] and more often, aerial cameras [15]. Google
Earth and Microsoft Virtual Earth are successful showcases
for 3D reconstruction of city models [16]. Following the
taxonomy of Seitz et al. [17], 3D reconstruction algorithms
can be categorized into four classes: voxel approaches [18],
level-set techniques [19], [20], line segment matching [21],
polygon mesh methods [22], and algorithms that compute
and merge depth maps [23], [24]. Unlike those methods,
our MFG does not pursuit a full scale reconstruction and
hence does not require intensive computation or suffers from
occlusion, correspondence, and lighting problems in the field.

Our MFG focuses on key features that represent building
facades and orthogonal/parallel lines which are insensitive to
illumination and shadow problems caused by natural lighting.
In a closely related work, Cham et al. [25] identify vertical
corner edges of buildings as well as the neighboring plane
normals from a single ground-view omnidirectional image
to estimate the camera pose. Recent work by Delmerico et
al. [26] proposes a method to determine a set of candidate
planes by sampling and clustering points from stereo images
with RANSAC using estimated local normals. These meth-
ods provide the inspiration that planes are important and
robust features to be extracted in reconstruction. However,
our MFG does not rely on the depth information from
existing stereo images or a specialized imaging device.
MFG simply employs multiple types of features and utilizes
multiple internal geometric relationships between features for
better robustness and applicability.

Properly matching multiple types of features across views
is essential to MFG construction. Although point feature
matching [13], [27] is relatively mature, line segment match-
ing is very challenging due to inaccurate end points, occlu-
sion, and complex correspondence. Schmid and Zisserman
[28] utilize the epipolar constraints of line segment end
points for matching, which requires the prior knowledge
of epipolar geometry. The color-based methods [29]–[31]
perform poorly when color features are not distinctive
and hence are sensitive to illumination conditions. Other
grouping matching methods [32], [33] are limited by either
high computational complexity or sensitivity to inaccurate
endpoints of line segments. Recently, Fan et al. [34] pro-
pose a line segment matching method by leveraging feature
point correspondences in adjacent regions. This is the best
available method for line segment matching and is named
as “point-based line matching (PBLM)” in this paper. This
method is promising but still misses many line segment
matches due to lack of feature points. Inspired by this
method, our MFG addresses these issues by introducing ideal
lines and analyzing collinear and coplanarity relationships.

Our group has worked on robot navigation using passive
vision system in past decade. We have developed appearance-
based method [35], investigated how depth error affects
navigation [36], and used vertical line segments for visual
odometry tasks [37], [38]. In the process, we have realized
it is necessary to combine benefits of different features to

assist navigation which leads to this work.

III. PROBLEM DEFINITION

A. Assumptions

To formulate the problem and focus on the most relevant
issues, we have the following assumptions.

• The robot is in a modern urban environment where
rectilinear polygonal buildings dominate the scene.

• To assist scene understanding, the robot is equipped
with a gravity sensor and knows its vertical direction.

• The intrinsic parameters of the finite perspective camera
are known by pre-calibration. The lens distortion of the
camera has been removed.

• The robot knows baseline distance for two views. This
can be achieved with on-board inertial sensors or wheel
encoders. These sensors are good at short distance
measurement. It is worth noting that the measurement
may contain error. We use the measurement as an initial
input and the baseline distance will be refined during the
image feature maturing process.

B. Notations, Coordinate Systems, and Problem Definition

In this paper, all the coordinate systems are right hand
systems. The superscript ′ denotes the corresponding notation
in the second view. Notations in the format of (a,a′) refer to
a corresponding pair of variables or parameters in the first
and second views, respectively. Let us define

• {W} as a 3D Euclidean world coordinate system (WCS)
with its x− z plane being horizontal,

• {C} and {C′} as two 3D camera coordinate systems
(CCS) for the first and the second views, respectively,
(For each CCS, its origin is at the camera optical
center, its z−axis coincides with the optical axis and
points to the forward direction of the camera, its x−axis
and y−axis are parallel to the horizontal and vertical
directions of the CCD sensor plane, respectively.)

• {I} and {I′} as two 2D image coordinate systems (ICS)
for the first and the second views, respectively, (For each
ICS, its u−axis and v−axis are parallel to x and y axes
of the corresponding CCS, respectively)

• Fr and F ′
r as the raw images taken at the first and the

second views, respectively, and
• K as the intrinsic parameter matrix of the camera.

With these notations defined, our problem is,
Definition 1: Given Fr and F ′

r , construct the MFG.
Now let us introduce MFG.

IV. MULTILAYER FEATURE GRAPH

Fig. 2 illustrates how MFG organizes different types
of features according to their geometric relationships. The
bottom layers of MFG are raw features such as SIFT points
and line segments while the top layers of MFG contain planes
describing the structure of the scene. To explain the structure
of MFG, we begin with the raw feature extraction.
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Fig. 2. The structure of the multilayer feature graph.

A. Layers 1&2: Raw Features

SIFT points and line segments are the raw features of
MFG (see Fig. 2). Define P := {p1, p2, . . .} as the SIFT
point feature set with pi being the i-th SIFT point feature.
Line segments are extracted using the line segment detector
(LSD) method [39]. Define ιi = [Ei,0,Ei,1]

T as the i-th line
segment with its two end points: Ei,0 = [ui,0,vi,0]

T and Ei,1 =
[ui,1,vi,1]

T . Let L = {ι1, ι2, . . . , ιn} denote a line segment set
with each element being a line segment in ICS.

Each SIFT point or line segment represents a node in
MFG. If a SIFT point is in the neighborhood (will be defined
later in the paper) of a line segment, then an edge between
them is established with the line segment being the parent
node. It is possible that a line segment node does not have
any child SIFT nodes (ιd in Fig. 2). A SIFT node may have
multiple parent line segment nodes (pb in Fig. 2).

Note that SIFT points are only used to assist line segment
matching in the paper. That is why we exam their adjacency
to line segments.

B. Layer 3: Ideal Lines

To aggregate line segments and extract potential lines from
the raw features, we introduce ideal lines.

Definition 2: An ideal line is defined as a real or virtual
line passing through a set of collinear line segments. An ideal
line might/might not correspond to a real line in 3D space.

Define L = {l1, l2, . . . , lm} as an ideal line set with li, i =
1, . . .m, being an ideal line in ICS. For a given set of collinear
line segments {ιa, ιb, . . .}, its ideal line li is obtained by
fitting the line through the end points of all line segments
in the set using the maximum likelihood estimation (MLE)
method [40]. As shown in Fig. 2, each line segment must
have only one corresponding ideal line as its parent node.
An ideal line may have multiple child line segment nodes.
An ideal line usually has three representations: 3D format in
{W} and two 2D formats in {I} and {I′} of the two views,
respectively.

C. Layer 4: Vertical Planes

Vertical planes in {W} form layer 4. Let πi, i = 1,2, . . . ,q,
denote vertical planes in {W} and πi = [ni,di]

T , where ni

is the normal vector of πi, and di is the distance from the
camera center to πi. Note that we do not include horizontal
planes in the design because horizontal planes represent
either road planes or building top planes. The former does
not exist when road is not flat and the latter is not visible
from a ground robot.

If an ideal line is located in a vertical plane, an edge
between the two nodes is established in MFG. A vertical
plane must have at least two child nodes because two lines
determine a plane when they are either intersecting or being
parallel to each other. An ideal line may not necessarily have
a parent node if it corresponds to an isolated linear object
such as a light pole. An ideal line may have two parent
vertical planes if it is a boundary line.

D. Layer 5: Vanishing Points

In a vertical plane, there usually are many parallel ideal
lines. Those parallel ideal lines intersect each other at van-
ishing points. Each vertical plane usually has two groups
of parallel ideal lines: one horizontal group and one vertical
group from building and window boundaries. Therefore, each
vertical plane has two dominating vanishing points. Fig. 2
illustrates the relationship by connecting each vertical plane
node to two parent vanishing point nodes.

Since modern urban area is largely a rectilinear environ-
ment, there usually are three dominating vanishing points
with one being vertical (denoted as vv) and two being
horizontal (denoted as v1 and v2). For simplicity, we use
three vanishing points in the rest of the paper although the
approach can be adaptive to varying numbers. Fig. 2 also
shows that a vanishing point may correspond to parallel ideal
line groups in different planes. For example, the vertical
vanishing point node links to every vertical plane node with
vertical ideal lines.

V. MFG CONSTRUCTION VIA FEATURE FUSION

Constructing MFG is nontrivial. It is a scene understanding
process. Raw features in layers 1&2 and vanishing points in
layer 5 are straightforward to obtain using existing methods.
However, ideal lines and vertical planes, which represent
structure of the scene at different granularity, are difficult to
compute because proper correspondence between two views
needs to be established. Fig. 3 illustrates the process of MFG
construction, which is named as feature fusion. The process
can be divided into three main components: parallelism,
collinearity, and coplanarity verifications.

A. Parallelism Verification

The purpose of parallelism verification is to divide line
segments and ideal lines into different parallel groups and
find group correspondence across the two views. Since par-
allel lines intersect each other at vanishing points, vanishing
points are natural classifiers for the parallelism verification.

Steps 1-5 in Fig. 3 illustrate the procedure. In step 1,
raw line segments are extracted using LSD. We then apply
RANSAC framework to line segments to estimate vanishing
points. Since we know the vertical direction from gravity
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Fig. 3. A block diagram for multilayer feature fusion.

sensors, it is easy to identify vanishing point vv which
corresponds to vertical line segments. It is worth noting that
vv must exist because urban buildings have many vertical
boundaries.

Horizontal vanishing points can be found by the following
orthogonality check,

∥vv
T ω v̂i∥< ε, (1)

where v̂i is a candidate horizontal vanishing point, ω =
(KKT )−1 is the image of the absolute conic, and ε is a
small positive threshold.

After identifying vanishing points, we can perform the
perspective correction [40] for both views to make v-axes
of ICSs to be vertical and therefore all vertical lines appear
vertical in the two views (step 3). We define F and F ′ as
the first and second views after the perspective correction,
respectively. Meanwhile, initial set of ideal lines in {I} and
{I′} can be established using MLE and RANSAC as well
(step 4). Ideal lines can be associated with line segments in
each view based on the inlier set of the RANSAC output.

With the three vanishing points, the ideal lines and line
segments in each view can be classified into three groups.
This allows us to match different parallel groups across two
views by matching vanishing points [41] (step 5). Fig. 4
illustrates the result of the vanishing point matching.

The correspondence between two views for parallel groups
by vanishing point matching is still too gross to be used to

F
'
F

Fig. 4. An example of vanishing point matching across F and F ′. The
line segments and ideal lines associated with the same vanishing points are
drawn in the same color (black, blue and red). In this example, vertical lines
appear vertical because F and F ′ are results of the perspective correction.

establish scene understanding. In fact, we need to establish
cross view correspondence between line segments and ideal
lines. However, one-to-one correspondence for line segments
is impossible to achieve due to severe occlusion and noises.
Collinearity verification is proposed to handle the challenge.

B. Collinearity Verification

Collinearity verification is to find the correspondences of
ideal lines and hence line segments across two views. This
process also establishes ideal lines and line segments in {W}.

A corresponding pair of line segments or ideal lines must
be in the same parallel groups defined by the same vanishing
points, which can help us reduce the matching problem
size. Since a corresponding pair of line segments in the
two views do not necessarily have corresponding end points
due to occlusion and camera perspective issues, checking
end point correspondence is not viable. Also an one-to-one
correspondence does not necessarily exist. In fact, many-to-
one and one-to-many mappings are not unusual. Collinearity
verification is designed to handle these challenging issues.

Steps 6-8 in Fig. 3 illustrate the process. We first find the
initial candidate correspondences for line segments using the
PBLM method [34] (step 6). For completeness, we brief the
PBLM method using Fig. 5.
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Fig. 5. An example of initial line segment matching using PBLM in [34].

For line segment ι j, we define its neighbor region as
Ne(ι j). The doted rectangles in Fig. 5 are the neighbor
regions. ι j bisects Ne(ι j) which has a half side length of
dt along the direction perpendicular to ι j. On the other
hand, we apply SIFT to F and F ′. If a SIFT point pi lies
in the neighbor region, then we denote it as pi ∈ Ne(ι j).
The initial line segment matching uses putative SIFT point
correspondences: for each putative point pair (pi, p′i), if
pi ∈ Ne(ιa) and p′i ∈ Ne(ι ′b), then the similarity between ιa
and ι ′b increases by 1. The initial line segment matches are
determined by thresholding the overall similarity.

The pro of this method is that it does not depend on
end point matching while the con is that it may miss many



potential matches due to lack of features. We need to refine
the results using ideal lines. Steps 7 and 8 in Fig. 3 show
the process. Using initial line segment correspondences, we
can tentatively match the ideal lines: given two ideal lines
lm and l′n in two views, we can determine lm and l′n as a
corresponding pair if the following is true,

∃ιi ∈ lm, ι ′j ∈ l′n s.t. (ιi, ι ′j) ∈ Sι ,ι ′ , (2)

where Sι ,ι ′ is the set of all initial line segment matches.
In step 8, we use the matched ideal line pairs to search for

more line segment matches missed by the initial matching
in step 7. Fig. 6 shows an example, where (l1, l′1) is a
pair of corresponding ideal lines obtained from the matched
line segment pair (ι1, ι ′1). (ι2, ι ′2) was not matched in the
initial matching step due to lack of SIFT features in the
neighbor region. There is no correspondence for ι3 in the
second view due to occlusions. Applying MSLD [31] metric,
the line segment correspondence (ι2, ι ′2) is found. Further-
more, (l1, l′1) helps us find the many-to-many correspondence
[(ι1, ι2, ι3),(ι ′1, ι ′2)] across two views.

Note that not all line segment or ideal line correspondences
are correct at this step. However, most wrong matches can
be removed by checking coplanar relationship next.
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Fig. 6. An example of ideal line-guided line segment matching.

C. Coplanarity Verification

So far, we have completed the construction of layers 1,
2, 3, and 5 of MFG. The remaining layer 4 consists of
vertical planes, which represent building facades and are of
great importance for robot navigation. Layer 4 only exists
in {W}. Coplanarity verification is designed to classify the
coplanar features and reconstruct these planes. The coplanar
verification process associates ideal lines to their residing
planes (i.e. forming edges between ideal lines and vertical
planes in MFG in Fig. 2). The process also removes false
correspondences and finds more correspondences missed by
previous steps.

1) Coplanarity Verification for Vertical Features: This
process is done in two stages. Step 9(a) in Fig. 3 refers to
the first stage where we estimate vertical planes from vertical
ideal lines and use the plane to verify vertical line matches.

In a top-down view, a vertical plane is reduced to a
single line πi = [nT

2×1,d]
T on the x− z plane of {W}. All

the vertical ideal lines are reduced to points on the plane.
Also, the 2D camera degenerates into a 1D camera. For the
two 1D views, we define the camera matrices as P2×3 =
K2×2[I2×2|02×1] and P′

2×3 = K2×2[R2×2|t2×1], respectively,
where the intrinsic parameters of the 1D camera, K2×2, can
be easily determined from the 2D camera parameter matrix
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Fig. 7. Coplanarity verification. These ideal line and line segments are
classified into two groups representing in different colors (black and red)
according to their residing vertical planes.

K, R2×2 is the 2D rotation matrix, and t2×1 = [tx, tz]T denotes
the translation between the two camera centers.

According to [40], line πi = [nT
2×1,d]

T introduces a 1D
homography for corresponding points in the two views,

H2×2 = K2×2(R2×2 − t2×1nT
2×1/d)K−1

2×2, (3)

where R2×2 can be computed from one pair of horizontal
vanishing point correspondence, t2×1 is measured by on-
board sensors, and n2×1 is a unitary vector. Only n2×1 and
d are the unknown variables to be estimated.

H2×2 has 2 degrees of freedom. Let ui and u′i be the
u−coordinates of vertical ideal lines li and l′i , respectively.
Denote ui = [ui,1]T and u′

i = [u′i,1]
T as the homogeneous

coordinates. From the definition of homography, we know

u′
i = H2×2ui. (4)

Define Ha,b as the (a,b)-th entry of H2×2. Opening (4) and
combining the resulting two equations, we have

uiH1,1 +H1,2 −uiu′iH2,1 −u′iH2,2 = 0. (5)

Eq. (5) has two unknown variables. Given 2 pairs of
coplanar vertical ideal lines, we can compute the minimal
solution of H2×2 by solving the two equations. All coplanar
vertical ideal lines can be found using RANSAC iteratively,
which selects a subset of inliers to minimize the geometric
error,

∑
i

dg(ui,Ĥ−1
2×2u′

i)+dg(u′
i,Ĥ2×2ui), (6)

where dg(·) denotes the geometric distance and Ĥ2×2 is
the estimation of H2×2. Ĥ2×2 is used to verify the cross
view vertical ideal line correspondences. It is clear that a
correctly corresponded ideal line pair must satisfy the ho-
mography. Hence we can refine the cross view vertical ideal
line correspondences by removing false correspondences and
searching for new correspondences to increase vertical ideal
line inlier set for each plane. The estimation of Ĥ2×2 and
the refinement process can be iterated until the cross view
vertical ideal line correspondences are stable.



Correspondingly, the change of cross view vertical ideal
line correspondence in the refinement process changes line
segment correspondences in the lower layer. We refine verti-
cal line segment correspondences, which is the second stage
(step 9(b) in Fig. 3). Fig. 7(a) illustrates the sample output
of this process.

Ĥ2×2 also allows us to compute vertical plane in the top-
down view. Define B = K−1

2×2H2×2K2×2. According to (3),
we can obtain d and n2×1 as follows,

d =
1√

(
B1,1R2,1−B2,1R1,1

B1,1tz−B2,1tx
)2 +(

B1,2R2,2−B2,2R1,2
B1,2tz−B2,2tx

)2
,

n2×1 =

 d(B1,1R2,1−B2,1R1,1)
B1,1tz−B2,1tx

d(B1,2R2,2−B2,2R1,2)
B1,2tz−B2,2tx

 ,

(7)

where Ba,b and Ra,b are the (a,b)-th entry of B and R2×2,
respectively.

2) Coplanarity Verification for Horizontal Features: Can-
didate vertical planes found in the previous step can be
further refined using horizontal line features (see Fig. 7(b)).
Horizontal line features can help remove false positive planes
and improve accuracy of vertical planes. Furthermore, we
can remove falsely matched horizontal features and group
the inliers based on the vertical planes (step 10 in Fig. 3).

A pair of corresponding lines (li, l′i) in two views can be
related by a 2D homography li = HT

3×3l′i . According to [40],
the 2D homograph can be obtained as follows,

H3×3 = K(R3×3 − t3×1nT
3×1/d)K−1, (8)

where R3×3 denotes the 3D camera rotation, t3×1 = [tx, ty, tz]T

is the translation between camera center positions of the two
views, and n3×1 = [nx,ny,nz] is the normal vector of the
plane. ny = 0 because the plane is vertical.

Comparing H2×2 in (3) and H3×3 in (8), we find that
R3×3 and n3×1 can be directly obtained from R2×2 and
n2×1, respectively. tx/d and tz/d are both known from H2×2.
Given H2×2, there is only one degree-of-freedom left in
H3×3. Therefore, the minimal solution of H3×3 can be
computed using one horizontal line correspondence and the
resulting H2×2 from the previous step. Defining H̃2×2 =
K−1

2×2H2×2K2×2, H̃3×3 = K−1H3×3K, we have

H̃3×3 =

 H̃1,1 0 H̃1,2
−nxty/d 1 −nzty/d

H̃2,1 0 H̃2,2

 , (9)

where H̃a,b is the (a,b)-th entry of H̃2×2. In H̃3×3, the only
unknown is ty. Note that we use ã indicate variable a is in
normalized coordinates in this paper.

Define l̃i = KT li and l̃′i = KT l′i where (li, l′i) is a cor-
responding pair of horizontal ideal lines. Denote l̃i =
[a1,a2,a3]

T and l̃′i = [a′1,a
′
2,a

′
3]

T as the homogeneous co-
ordinates of l̃ and l̃′, respectively. Pair (l̃i, l̃′i) satisfies 2D
homography by l̃i = H̃T

3×3 l̃′i . Thus

a2a′1H̃1,2 −a2a′2nzty/d +a2a′3H̃2,2 = a3a′2. (10)

Combining (9) and (10), we can obtain the minimal
solution of H3×3. The coplanar horizontal lines can be
found using RANSAC iteratively. The homography-guided
refinement of correspondences for horizontal ideal lines and
line segments are similar to the process for vertical features.

Following the principle of the Gold Standard Algorithm
approach in computer vision [40], the final inlier set of
coplanar vertical and horizontal lines are used to re-estimate
πi’s using MLE to improve accuracy. With πi’s obtained, this
completes the construction of MFG.

VI. EXPERIMENTS

We have implemented our MFG construction algorithm
using Matlab 2008b on a laptop PC with an Intel 2.26Ghz
Core 2 Duo CPU, 3GB RAM, a 160GB hard disk and
a Windows XP OS. In the physical experiments, we use
a BenQ DCE1035 camera with a resolution of 640× 480
pixels. For the testing dataset, we have taken 8 different pairs
of image on Texas A&M campus. For each pair, the baseline
distance between two views is 5.5 m. The orientation settings
of the camera are set to ensure a good overlap between the
two views. Fig. 8 illustrates the first view of the 8 pairs. The
algorithm has not been optimized yet. The average time for
constructing an MFG from one image pair is 42 sec.

1 2 3 4

8765

Fig. 8. Sample images of the dataset.

A. A Sample Output

Our algorithm has successfully constructed MFG. As a
sample output, Fig. 9 illustrates the intermediate output of
correctly matched line segments for the 8-th pair in Fig. 8.
Four vertical planes have been identified in the figure.
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Fig. 9. Sample output for the MFG construction. We use the same color
(blue yellow, red, and green) for correctly matched line segments in the
same residing vertical plane.

Testing the functionality is just the first step of experi-
ments. Two more experiments have been conducted to verify
MFG. The first experiment is to verify its robustness by
checking if MFG can find better correspondence between



line segment features. This is important because the rest of
MFG depends on the correspondence accuracy.

B. Robustness of Line Segment Matching

One key advantage of MFG is that it verifies line segments
using multiple types of geometric relationships. If successful,
the line segment correspondence is supposed to be more
robust than the existing line segment matching method.

Since the best available method for line segment matching
is the PBLM in [34] and the MFG construction algorithm
has adopted the approach to find initial correspondence in
Section V-B, the comparison essentially tries to find if our
parallelism, collinearity, and coplanarity verifications can
improve the matching results. The threshold of SIFT point
matching in PBLM is set to 0.85. We compared the number
of total matches (TM) and correct ratios (CR) between the
two methods. Table I shows the matching performance using
the aforementioned dataset. The last two columns of the
table refer to how much TM and CR of MFG are more than
those of PBLM, respectively. It can be seen that MFG can
identify significantly more correctly matched line segments
than those of PBLM. Also, CRs of MFG are larger than those
of PBLM for all cases except the second pair.

TABLE I
LINE SEGMENT MATCHING RESULTS: PBLM VS. MFG.

No. PBLM MFG TM
difference

CR
differenceTM CR TM CR

1 224 93.3% 297 95.6% 73 2.3%
2 157 94.9% 289 92.0% 132 -2.9%
3 124 92.7% 178 96.2% 54 3.5%
4 186 93.5% 282 96.1% 96 2.6%
5 157 93.0% 274 95.3% 117 2.3%
6 219 93.6% 302 94.0% 83 0.4%
7 126 94.4% 189 94.7% 73 0.3%
8 194 92.3% 314 95.5% 120 3.2%

C. Vertical Plane Detection and Reconstruction

Our second experiment is to verify if the MFG construc-
tion algorithm can properly identify vertical planes and to
exam the accuracy of vertical plane reconstruction. Denote π̂i
and π̄i as the estimation from the MFG construction and the
ground truth of vertical plane πi, respectively. Ground truth
π̄i is obtained by using three non-collinear 3D points lying
in πi. The coordinates of the 3D points are obtained using
a BOSCH GLR225 laser distance measurer with a range up
to 70 m and measurement accuracy of ±1.5mm. Baseline
distances are measured with a tape measure.

Directly comparing π̂i to π̄i is not meaningful because the
result depends on coordinate system and unit selections. To
avoid the problem, we utilize the 3D point reconstruction
error in comparison. Define x j as a 2D image point lying in
πi. With the aid of camera intrinsic parameters and plane
equations, we can reconstruct this point from π̄i and π̂i,
respectively. Let X̄ j and X̂ j be the corresponding results. We

define a relative error metric as ∥X̄ j−X̂ j∥
∥X̄ j∥

where ∥·∥ represents
the Euclidean distance. For each vertical plane, we manually

select 20 image feature points as even as possible to cover
the whole plane region in the image. The mean value and
standard deviation of the relative errors are shown in Table II
for the dataset.

TABLE II
PERCENTILE RELATIVE ERRORS OF THE RECONSTRUCTED 3D POINTS.

No.
π1 π2 π3 π4

mean std.
dev. mean std.

dev. mean std.
dev. mean std.

dev.
1 2.58 0.82 4.11 1.18
2 3.33 0.48 3.16 0.88
3 4.02 1.28 4.49 0.92
4 4.10 1.03 4.67 0.41
5 3.43 0.14 4.43 0.28 4.37 0.28
6 5.18 0.74 4.02 0.64 2.64 0.44
7 4.08 0.16 4.18 0.43 5.20 0.47
8 4.88 0.29 3.00 0.48 4.41 0.15 6.01 0.26

Tab. II shows that the algorithm has the ability to identify
vertical planes in the images, which results in the different
numbers of vertical planes for the image pairs in the dataset.
The relative errors of points on planes are reasonably small
which indicates that the estimate planes are reasonably accu-
rate. The MFG construction algorithm design is successful.

VII. CONCLUSION AND FUTURE WORK

We reported a multilayer feature graph (MFG) to facilitate
the robot scene understanding in urban areas. Nodes of an
MFG were features such as SIFT feature points, line seg-
ments, lines, and planes while edges of the MFG represented
different geometric relationships such as adjacency, paral-
lelism, collinearity, and coplanarity. MFG also connected
the features in two views and the corresponding 3D coor-
dinate system. Our MFG construction method was a feature
fusion process which incrementally, iteratively, and exten-
sively verified the aforementioned geometric relationships
using the RANSAC framework. We implemented the MFG
construction method and tested it in physical experiments.
Results showed that MFG can be successfully established
and the feature correspondence outcomes were significantly
improved over existing feature matching methods.

The current result is just an initial step for MFG. In the
future, we plan to address the N-View (N > 2) construction
of MFG by combining bundle adjustment idea with error
analysis into MFG. We will analyze computation complexity
and develop efficient data structures for MFG. We will also
investigate how to evolve MFG into an incremental update
process so that it can be efficiently constructed for continuous
image streams from mobile robots. Distributed and parallel
implementation of MFG will be another direction to be
explored. Applying MFG to GPS-less robot localization
will be an immediate application if Google street view
database is used. We will present these developments in
future publications.
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