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Abstract— Constrained by the symmetries of its Gaussian 

elements, traditional ECG dynamic model has difficulty in 

accurately representing complicated ECG waveforms. In order to 

overcome to this limitation, this paper proposes a generalized 

EDM by introducing asymmetric Gaussians into the model 

instead of symmetric ones.  The generalized EDM is then applied 

to the model-based ECG denoising framework using an extended 

Kalman filter (EKF). Experiments are conducted based on the 

MIT-BIH Arrhythmia database, and the results show that the 

proposed EDM is able to model a wider range of ECG 

morphologies than the traditional one, and consequently 

improves the denoising performance. 
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I.  INTRODUCTION  

Electrocardiogram (ECG) is a recording of the bioelectric 
potential produced by rhythmical cardiac activities, contraction 
and relaxation. Obtained by a noninvasive technique, ECG has 
been extensively used for heart disease diagnosis in hospital, as 
well as patient monitoring at home, since it can provide 
valuable information of the heart functional conditions. 
However, ECG is usually contaminated by kinds of noises, for 
example, electromyographic (EMG) noise, which overlaps the 
ECG signal in the frequency domain. Therefore, traditional 
band-pass filtering cannot suppress such noises efficiently [1]. 

Based on an ECG dynamic model (EDM) previously 
developed for generating realistic synthetic ECG [2], Sameni et 
al. proposed a nonlinear Bayesian filtering framework using 
extended Kalman filter (EKF) for ECG denoising [3], and 
Sayadi et al. further modified this work by extending the 
previous two-dimensional EKF structure to a 17-dimensianal 
case [4]. Although these nonlinear filtering approaches have 
demonstrated desirable denoising performance, they are limited 
by the EDM which utilizes a few Gaussians to model one 
heartbeat of ECG signals and therefore has difficulty in 
modeling those containing asymmetric waveforms.  

In this paper, asymmetric Gaussians (AGs) are introduced 
to generalize the ECG dynamic model (EDM) by replacing the 
previous symmetric ones, and the extended Kalman filter 
(EKF) is then utilized to filter noisy ECG signals based on the 
generalized EDM. Experiment results show that our method 

has improved the model’s ability of approximating ECG 
morphologies, as well as the denoising performance. 

The rest of this paper is organized as follows. Section II 
introduces the required background knowledge of the ECG 
dynamic model and extended Kalman filter. Details of the 
proposed method are presented in Section III. Section IV 
provides experimental results, and conclusion and future work 
come in Section V. 

II. BACKGROUND 

A. ECG Dynamic Model 

A realistic synthetic ECG generator was first proposed by 
McSharry et al. [2], using a set of 3-D state equations to 
generate a trajectory in the Cartesian coordinates. The dynamic 
equations were then transformed into the polar form for a 
simpler compact set by Sameni et al. [3]. 

 Briefly speaking, in this model, several Gaussians are 
utilized to approximate the feature waves (P, Q, R, S and T 
waves, see Fig. 1) in one heartbeat of ECG. To handle the heart 
rate variation, each heartbeat signal is linearly mapped into the 
interval [0, 2π] as follows: 
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where [0,2 ]  , 
ia ,

ib and
i respectively represent the 

amplitude, width and location of the i-th wave (or Gaussian). 

Using the Euler forward difference, we obtain the discrete 

iteration form: 
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where 2 / N  is angular displacement per sampling time, 

N is the beat length, and ( )k k   . 

As it is shown in (2), the ECG signal is modeled with a sum 
of five Gaussian functions, each of which is located at a 
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Figure 1. A typical synthetic ECG signal 

specific angular position
i , and a typical synthetic ECG signal 

is illustrated in Fig. 1. 

B. Extended Kalman Filter 

As a nonlinear extension of the conventional Kalman filter, 
the extended Kalman filter (EKF) is developed for systems 
with nonlinear dynamic models [5]. Consider a discrete 

nonlinear system with the state vector
kx , input vector

ku , and 

observation vector
ky . The dynamic state space model can be 

formulated as  
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where ( )f  is the state evolution function, ( )g  is the 

observation function, 
kw and 

kv stand for process and 

measurement noises respectively, with covariance matrices 

{ }T

k k kQ E w w and { }T

k k kR E v v . The initial state estimate of 

the state
0x is defined as

0 0{ }x E x , with covariance 

matrix
0 0 0 0 0{( )( ) }TP E x x x x   . 

We need to derive a linear approximation of (3) near a 

desired reference point ˆ ˆ ˆ( , , , )k k k kx u w v so as to apply the Kalman 

filter formalism: 
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ˆ { }k kw E w and ˆ { }k kv E v are respectively the expectations of 

process noise and measurement noise at time instant k. 

 

Kalman filter has two distinct phases: Predict and Update. 
The first phase produces a prediction of the current state based 
on the previous one, and in Update step, the current 
measurement is utilized to refine the prediction to obtain a 
revised and hopefully more accurate estimate of the current 
state. In order to implement the EKF, the Predict phase is 
accomplished using the original nonlinear function, while in 
the Update phase, the Kalman filter gain and covariance matrix 
are calculated by the linearized equations. The process is 
summarized as follow: 
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where 
1

ˆ
k k

x


is the prediction of the state at the k-th  instant, 

using the past observations before k, and ˆ
k k

x  is the estimate of 

this state after using the observation 
ky . 

1k k
P


and 

k k
P are also 

defined in a similar way, as estimates of the corresponding 
covariance matrices. 

III. METHODOLOGY 

A. Generalization of EDM 

If ECG feature waves (P, Q, R, S and T waves) can be 
assumed to have totally or nearly symmetric waveforms, the 
foregoing ECG dynamic model (EDM) can serve as a close 
approximation to the original signal. However, in reality, the 
waveforms of ECG signals are often not symmetric. Thus, it’s 
difficult for the traditional EDM to accurately model them 
using symmetric Gaussians, which will further affect the 
performance of the model-based nonlinear filtering. Therefore, 
it’s necessary to generalize the EDM to represent a wider range 
of ECG morphologies. 

 As an extension of conventional Gaussian function, 
asymmetric Gaussian (AG) can capture spatially asymmetric 
distribution well [6]. Traditionally, an AG is defined as: 
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 is a unit step function.   
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Figure 2. Asymmetric Gaussians: (a) with the step function, and (b) with the 
sigmoid function 

As shown in Fig. 2 (a), it is the difference between 
1  and 

2 that determines the asymmetry degree: the larger the 

difference, the more asymmetric the waveform. 

However, the AG defined in (8) is not guaranteed to be 
derivable everywhere because of the step function. In order to 
apply AG to the EKF denoising framework, it’s necessary to 
make it derivable throughout. Therefore, we propose to replace 
the unit step function with a sigmoid function as follows: 
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where ( ) 1 (1 )puu e   is a sigmoid function with a 

parameter p which determines the function shape: as p  , 

the sigmoid function evolves into a step function. Assigning a 
large enough value to p  (e.g. p =5 in this paper), the AG 

defined in (9) is not only derivable everywhere now, but also 
has almost the same shape as that in (8), as shown in Fig. 2 (b).  

With the proposed AG, the EDM in (1) can be generalized 
to be 
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and the corresponding discrete form becomes: 
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Since the AG parameters 1 2, , ,i i i ia b b vary from beat to beat 

due to the variation of heartbeat morphology, they should be 
included in the state vector. Thus, in the generalized EDM, the 
state vector consists of the 20 AG parameters, and the 
instantaneous ECG value at each time instant: 

1 2[ , , , , , , , , ]T

P P P Px a b b ECG , the input is 

( )ku k , and the output is ( )ky ECG k . Then the nonlinear 

state space equations are then formulated as below: 
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where 
21 21( ( ), , ( ))kf ECG k u w k can be simply derived from (11) 

as follows: 
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where ( ) ( )i k i ik u k        . 

Since the only observable state is the ECG signal, the 
observation equation is: 

1 21[0, ,0,1]k k ky x v                            (14) 

B. Linearization of the Nonlinear EDM 

The basic idea of EKF is to linearize the state space model 
at each time instant around the most recent state estimation. 
Given the generalized nonlinear EDM, the linearization 
matrices in (5) are calculated as below: 
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C. Initialization of EDM 

Before starting the EKF iteration process of (6) and (7), it’s 

necessary to initialize the state vector 0x  first. An intuitive way 

is to estimate the initial state by experience. Although this 



method may be applicable to normal ECG signals, it’s usually 
hard to estimate abnormal ECG features empirically.  

A preferable way is to initialize the state vector by finding 
the optimal AG parameters that can best fit the AG to each beat 
of the ECG signal. As suggested in [7], by using a nonlinear 
least-square approach, the optimal estimate of the parameters in 
the MMSE sense can be found. In this paper, the lsqnonlin 
function in Matlab is utilized to implement the nonlinear 
optimization, and then initialize the state vector with the 
resultant parameters for the experiments presented later. 

It’s worth noting that it would be helpful to initialize the 
optimization process (lsqnonlin in this case) based on 
physiological knowledge, since the method tends to stop at a 
local optimal solution. Although abnormal heartbeats often 
have various waveforms, for example, the T wave may be 
inverted, the temporal order and distribution of all the waves in 
each beat are generally steady, which is helpful to the 
initialization of the optimization process. 

IV. EXPERIMENT RESULTS 

In this section, we carry out two experiments, respectively 

on ECG approximation and model-based denoising as follows. 

A. ECG Approximation 

In order to show the advantage in modeling complicated 
ECG morphologies, the generalized EDM is utilized to 
approximate both clean and noisy ECG signals. 

 The clean ECG signals are taken from the MIT-BIH 
Arrhythmia database [8], in which every record consists of two 
lead recordings sampled at 360 Hz with 11 bits per sample of 
resolution. The noisy signals are generated by corrupting the 
clean ones with white Gaussian noise, such that the Signal-to-
Noise Ratio (SNR) gets to a specific value, e.g. 10 dB in this 
work.  

For evaluating the approximating performance, we have 
adopted the sum of squared error (SSE) of each ECG beat 
defined by: 
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where x is the original signal (of one ECG cycle), and x  

denotes the approximated signal obtained by model. 

TABLE I.  ECG APPROXIMATION RESULTS 

SSE Clean ECG Noisy ECG 

EDM G-EDM EDM G-EDM 

219 0.1096 0.0701 0.8192 0.7863 

220 0.0826 0.0683 0.4092 0.3756 

221 0.1136 0.0923 0.7799 0.7351 

228 0.2318 0.1903 0.9216 0.8905 

Mean 0.1344 0.1053 0.7325 0.6968 
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Figure 3. Clean ECG approximation by model 
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Figure 4. Noisy ECG approximation by model 

Four records are selected from the database, each of which 
contains more than 2000 ECG cycles, and the average SSE of 
each record are calculated for comparison, as shown in Table I.  

Fig. 3 has illustrated a sample portion of clean ECG signal, 
as well as the approximated signal obtained respectively by the 
traditional EDM and the generalized one, and Fig. 4 shows a 
sample portion of noisy ECG signal which is also 
approximated by the two methods. 

From the numeric and figure comparisons above, we can 
conclude that due to the asymmetric waveforms in the original 
ECG, traditional EDM is not able to represent the morphology 
accurately, whereas the generalized model can approximate it 
well by virtue of the introduced asymmetric Gaussians.   

B. Model-based Denoising 

In order to quantitatively evaluate the denoising 
performance of the proposed method, we adopt the notion of 
SNR Improvement (Imp) defined by: 

Record 
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where xc denotes the clean signal, xn represents the noisy signal, 
xd is the denoised one. 

As shown in Table II, SNR improvements of noisy ECG 
inputs corrupted by different noises (5dB and 10dB) are 
calculated based on both denoising methods, and a sample of 
the denoising output is also illustrated in Fig. 5, where the 
noisy ECG has an SNR of 5dB. Both the quantitative and 
qualitative results demonstrate that the proposed method using 
generalized EDM has enhanced the ECG denoising 
performance. 

TABLE II.  EKF DENOISING RESULTS 

Imp(dB) Input 10dB Input 5dB 

EDM G-EDM EDM G-EDM 

219 6.752 6.841 7.023 7.175 

220 5.268 5.396 5.561 5.689 

221 7.094 7.203 7.513 7.634 

228 6.262 6.377 6.469 6.683 

Mean 6.344 6.454 6.642 6.795 
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Figure 5. Model-based EKF denoising results 

CONCLUSION AND FUTURE WORK 

In this paper, a modified version of asymmetric Gaussian is 
introduced by the use of sigmoid function instead of step 
function. Furthermore, the modified version is employed to 
generalize the ECG dynamic model (EDM) previously 
developed for generating synthetic ECG. The result is that the 
generalized EDM can accurately represent a larger variety of 
ECG morphologies, especially for those with asymmetric 
waveforms. Moreover, an extended Kalman filter (EKF) based 
framework for ECG denoising is implemented using the 
generalized EDM. Experimental results demonstrate that the 
denoising performance of our method has been improved by 
virtue of the enhanced ECG approximation ability of the 
generalized EDM.  

Since the generalized EDM is capable of modeling the 
ECG feature waves more accurately, it may find applications in 
ECG feature extraction and classification, which is one of our 
future studies. 
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