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Abstract 
 

In this paper, a novel scheme for Electrocardiogram 
(ECG) denoising is presented based on ECG dynamic 
model and Empirical mode decomposition (EMD). Firstly, 
we pre-filter the noisy ECG by making the model fit it in 
the MMSE sense, in order to preserve the important 
morphological features, especially the QRS complex. 
After that, the model is subtracted from the noisy ECG, 
and the residual signal is then decomposed using EMD 
and denoised by discarding the noise components from 
the decomposition results. Finally, the resultant ECG is 
obtained by combining the model and the denoised 
residue. Experiments conducted on both real and 
synthetic ECG data have demonstrated that the proposed 
method is a superior tool for ECG denoising. 
 
1. Introduction 
 

Electrocardiogram (ECG) signal is a recording of the 
bioelectric potential produced by rhythmical cardiac 
activities. ECG has been extensively used for heart 
disease diagnosis in hospital, as well as patient 
monitoring at home, since it can provide valuable 
information of the heart functional conditions. However, 
reliable and efficient clinical applications are highly 
dependent on the accuracy of information extracted from 
the ECG recording, for ECG signals are usually corrupted 
with various artifacts. 

The source of ECG artifacts can be cardiac-related, for 
example, reduction or disappearance of the isoelectric 
interval, prolonged repolarization, or atrial flutter; 
extracardiac noise sources include respiration, changes of 
electrode position, muscle contraction, and power line 
interference [1]. Therefore, the goal of ECG denoising is 
to separate the valid cardiac components from the 
background noises so as to obtain a signal that allows 
reliable interpretation. 

Due to the overlapping between cardiac components 
and noncardiac contaminants in frequency, especially 
from 0.01 Hz to 100 Hz, linear filtering (e.g. low-pass or 
band-pass filter) is not adequate to eliminate such noises 
while keeping valid components unchanged [2] [3]. 
Recently, numerous approaches have been proposed to 
denoise ECG signals, for example, principal component 

analysis (PCA) [4], independent component analysis 
(ICA) [5], neural networks (NN) [6], and wavelet 
transform (WT) based denoising techniques [7]. Although 
they demonstrated good performance, the model of ECG 
in these methods is either fairly arbitrary or essentially 
based on the frequency content of the ECG and the 
location of the ECG peaks in time to some degree.  

Based on three coupled ordinary differential equations, 
a dynamic model was firstly developed by McSharry et al. 
[8] for synthesizing artificial ECGs. Later, Clifford et al. 
[9] presented a model-based filtering scheme which fitted 
the model to a noisy ECG in the MMSE sense by 
performing a constrained nonlinear optimization. This 
method can capture much clinical information of the 
heartbeat, but its efficacy is still limited by the 
optimization process which easily falls into a local 
optimal solution.  

Recently, a new signal analysis method called 
Empirical mode decomposition (EMD) has been 
introduced by Huang et al. [10] for analyzing data from 
nonstationary and nonlinear processes. The major 
advantage of EMD is that the basis functions used to 
decompose a signal are not predefined but adaptively 
derived from the signal itself. Therefore, EMD has found 
vast applications in signal analysis, including biomedical 
engineering problems. However, directly applying EMD 
to the ECG denoising will not produce a desired result 
due to the physiological characteristics of ECG, as 
detailed later. In [11], Weng et al. proposed to avoid this 
question by preventing the QRS complex from being 
filtered, but this method only denoised ECG partly.  

In this paper, we propose to apply the EMD algorithm 
to ECG denoising problem based on the ECG dynamic 
model. The contribution of our method is that it not only 
makes use of the advantage of EMD in processing 
nonlinear and nonstationary signal (e.g. ECG), but also 
overcomes the potential problem brought by direct ECG 
denoising with EMD, by utilizing a simple and flexible 
ECG model to pre-filter the signal. Experiments have 
been conducted on real ECG records from the MIT-BIH 
Arrhythmia Database [12] with additive white noise. Also, 
synthetic ECGs are used to verify the denoising 
performance when input signal SNR is high. Both 
quantitative and qualitative results show that our method 
offers a superior performance for ECG denoising.  

 



2. Background 
 
2.1. Empirical mode decomposition 

 
Empirical mode decomposition (EMD) is intuitive, a 

posteriori and adaptive, with basis functions derived fully 
from the data. Its essence is to identify the intrinsic 
oscillatory modes by their characteristic time scales in the 
signal empirically, and accordingly decompose the signal 
into intrinsic mode functions (IMFs) by means of a sifting 
process. Therefore, EMD is especially applicable for 
nonlinear and nonstationary signals, including ECG.   

As a counterpart to the harmonic function in Fourier 
analysis, IMF represents the oscillating mode embedded 
in the original data. By definition, an IMF should satisfy 
two conditions: (1) the total number of local extrema and 
that of zero crossings should be equal to each other or 
different by at most one, and (2) the mean of the upper 
and lower envelopes respectively defined by local 
maxima and local minima should be zero. Based on this 
definition, sifting steps can be summarized as follows: 

Given a signal X(t), the first step is to find out all local 
extrema. Then, all local maxima are connected by a cubic 
spline line as the upper envelope, and the lower envelope 
then comes out using the local minima in a similar way. 
In expectation, the two envelopes can cover all the data 
between them, and the their mean is designated as m1(t). 
So far, the first sifting process has been done, and the 
prototype of the first IMF has come forth as 

1 1( ) ( ) ( )p t X t m t= −                        (1) 
Although p1(t) should be an IMF ideally, in reality, it 

still contains more than one extrema between zero 
crossings due to the overshoots and undershoots involved 
in the envelope-generating step. Thus, sifting has to be 
repeated on the prototype of IMF until pk(t) satisfies the 
two conditions above, and the first IMF c1(t) is then 
obtained as the last pk(t). To terminate the sifting process, 
a common method is accomplished by limiting the size of 
the standard difference (SD) calculated from the two 
consecutive sifting results  
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A typical value for SD can be set between 0.2 and 0.3 
[10]. Once c1(t)  is obtained, it is then subtracted from the 
original data to get a residue r1(t): 

1 1( ) ( ) ( )r t X t c t= −                                (3) 
Obviously, c1(t) represents the finest scale mode of 

oscillation, and r1(t) still contains useful information 
about longer time scale components. Therefore, the 
residue is treated as a new signal, and repeated sifting 
processes are conducted to obtain: 

2 1 2 1( ) ( ) ( ), , ( ) ( ) ( )n n nr t r t c t r t r t c t−= − = −L       (4) 

The whole process can be stopped when (1) cn(t) or 
rn(t) is less than a predetermined threshold, or (2) rn(t) 
becomes a constant or monotonic function. Combining (3) 
and (4), we finally get the decomposition result: 
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where the original signal is decomposed into n IMFs and 
one residue, which is often denoted as the last IMF rn+1(t) 
for convenience.  

 
2.2. ECG dynamic model 
 

A realistic synthetic ECG generator was first proposed 
by McSharry et al. [8], using a set of 3-D state equations 
to produce a trajectory in the Cartesian coordinates. The 
dynamic equations were then transformed into the polar 
form for a simpler compact set by Sameni et al. [13]. 

In essence, this model describes each feature wave (e.g. 
P, Q, R, S and T wave) of one ECG cycle by a Gaussian 
with three parameters: the amplitude ai, width bi, and 
location θi. The vertical displacement of ECG is 
determined by an ordinary differential equation 

2

2 2
{ , , , , }

( ) exp
2

i i
i

i P Q R S T i i

z a
b b
θ θ

θ
∈

⎛ ⎞Δ Δ
= − −⎜ ⎟

⎝ ⎠
∑&             (6) 

where ( )i iθ θ θΔ = − and [0,2 ]θ π∈ , since each cycle of 
ECG has been linearly mapped into the interval [0, 2π] to 
handle the heart rate variation. 

A mathematical representation of one ECG cycle can 
be obtained by integrating the differential equation (6) 
with respect to θ 
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No z-offset exists in this model, for the ECG 
isoelectric level is assumed as zero. It’s obvious that the 
model approximates an ECG cycle by the sum of five 
Gaussians with parameters describing wave amplitudes, 
widths and locations respectively, as shown in Figure 1. 

 

Figure 1. ECG model. Note that the red dashed line 
denotes the isoelectric level, and only the parameters 
for T wave are illustrated due to the limited space. 



3. Methodology 
 
3.1. Problem of direct ECG denoising by EMD 
 

Since our interest is ECG denoising, a noisy ECG 
signal is now generated by adding white noise to a clean 
one, and then decomposed by EMD as shown in Figure 2.  
The top two subfigures are respectively the clean and 
noisy ECGs, and below them are all the 10 IMFs. From 
this figure, we acquire two pieces of information: (1) the 
average time scale of an IMF increases as the IMF order 
increases; and (2) the time scale contained in one IMF is 
not uniform, but various with time.    

The basic principle of denoising by EMD is to 
represent the denoised signal with a partial sum of the 
IMFs.  Although various approaches have been proposed 
to identify whether a specific IMF contains useful 
information or noise [14], their performances are not 
satisfactory when directly applied to the problem of ECG 
denoising, as shown next. 

Examining the IMFs in Figure 2, it’s easy to find that 
the first IMF contains almost nothing but high frequency 
noise, and that the rest IMFs can be considered to mainly 
contain useful information about the ECG components, 
except the second IMF which contains both high 
frequency noise and components of the QRS complex. 

Here comes the dilemma. If we simply discard the first 
IMF as noise, the output will still consist of considerable 
noise as illustrated in Figure 3 (a). If we remove the 
second IMF together, the resultant ECG will have the R 
waves heavily distorted as shown in Figure 3 (b). 
Therefore, neither result is satisfactory. 

The cause of this problem is that the R wave has a 
sharp and high waveform, which easily falls in lower 
order IMFs together with noise components. To deal with 
this problem, [11] proposed to preserve the QRS complex 
with a window when discarding the noise-dominant IMFs. 
Although this method removes much noise from the noisy 
signal, it suffers a flaw that it has simply ignored the QRS 
complex in the denoising process, which is of high 
importance in ECG morphology. Therefore, a more 
considerate scheme is presented in this paper, by virtue of 
the ECG dynamic model. 
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Figure 3.  Direct ECG denoising by EMD. (a) 
Removing the 1st IMF, (b) Removing the top two 
IMFs. Note the considerable residual noise in (a), and the 
R wave distortion in (b).
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Figure 2. Noisy ECG and decomposition result. 



3.2. Model-based pre-filtering 
 

Since the above-mentioned problem originates from 
ECG characteristics, it should also be solved by them. 
Fortunately, the ECG dynamic model is an excellent tool 
to capture ECG morphological features. Clifford et al. [9] 
have demonstrated that this model can be used to filter a 
noisy ECG by fitting equation (7) to an ECG beat, and the 
filtered signal can preserve much clinical information, as 
illustrated in Figure 4 (a). The advantage of this model-
based filtering lies in the sound physiological meaning 
behind the dynamic model. 
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Figure 4. (a) ECG model fitted to noisy ECG, (b) 
Difference between ECG model and clean ECG. 

In practice, the ECG model z(θ) is fitted to a noisy 
signal s(θ) by minimizing the squared error between them. 
That is, we need to find 
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over all five { , , , , }i P Q R S T∈ , with [0,2 ]θ π∈ , and 
solve (8) by a gradient descent method in the parameter 
space. The Matlab function lsqnonlin.m can be applied to 
implementing this nonlinear optimization. However, this 
optimization problem can only find a local solution 
neighboring to the initial solution, so the resultant model 
usually does not fit the noisy signal well enough, and 
consequently differs from the clean ECG. As shown in 
Figure 4 (b), the difference d1 between model and clean 
ECG is of low frequency, while the difference d2 between 
model and noisy ECG still contains significant noise. 
From d2, we wish to estimate the ideal difference d1, and 
combine it with the model to obtain the finally denoised 

ECG, hopefully close to the clean one as much as 
possible. 

 
3.3. Denoising by EMD 
 

Since the fitted model has filtered and preserved the 
QRS complex very well as shown in Figure 4 (a), we only 
need to deal with the residue signal d2, which is now 
ready to be denoised by EMD. 

Firstly, d2 is decomposed into a set of IMFs, as shown 
in Figure 5. In order to obtain the denoised signal as a 
partial sum of the IMFs, we need to identify and discard 
IMFs that mainly contain noise components, and then add 
up all the other IMFs.  

In order to determine which IMF comprises useful 
information and which is primarily of noise, we adopt a 
significance IMF test procedure, which is proposed by 
Flandrin et al. [15] through analyzing the EMD of 
fractional Gaussian noise. They found that apart from the 
first IMF of the noise-only signal, the power spectra of 
the other IMFs exhibit self similar characteristics like 
those appearing in any dyadic filter structure. Therefore, 
the logarithm of the k-th IMF energy Ek, i.e. log2Ek, 
should linearly decrease with respect to k. 
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Since we focus on white Gaussian noise (a special case 
of fractional Gaussian noise) in this paper, the IMF 
energies of a white-noise-only signal can be described 
approximately by: 

2( 2.01 ) 0.719 2,3, 4k
kE kσ −= = L (9) 

where σ2 can be approximated by the variance of the first 
IMF of the noisy signal [16]. In Figure 6, the dashed line 
shows the relationship between log2Ek and k for a white 



noise model, while the solid line denotes the relationship 
for d2. The first 4 IMFs of d2 share similar energy 
distributions with those of the noise-only signal, but from 
k=5, they diverge significantly from each other, indicating 
that the top 4 IMFs are primarily noise components and 
useful information is supposed to reside in the rest IMFs.  
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Figure 6. Significance IMF test.  
To verify this, the partial sum of the last 5 IMFs is 

shown in the lower subfigure of Figure 7. Despite of 
some difference from the ideal signal d1, the partial sum 
has captured major information, especially the trend. 
Finally, we obtain the denoised ECG by adding the partial 
sum to the model (see section B), and the result turns out 
to be rather closer to the clean ECG than the model, as 
illustrated in the upper of Figure 7. 
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Figure 7. Final denoising results. The upper shows 
the finally denoised ECG, and the lower shows the partial 
sum of IMFs of d2. 

In order to measure the similarity of IMF energy 
distribution between the noisy signal and the noise-only 
one, we can set a difference threshold for log2Ek. That is, 
if the difference exceeds the threshold, we regard the 
corresponding IMF as a noise component and discard it. 
In this paper, we empirically choose the threshold as 
|0.05log2σ2|, where σ2 is the variance of the first-order 
IMF. 

4. Experiment results 
 

Experiments are conducted on MIT-BIH Arrhythmia 
Database [12], and artificial synthetic ECGs. To evaluate 
the denoising performance, we adopt the notion of Signal-
to-noise ratio improvement (SNRImp) defined as 

( )2 2

[ ]

10 log ( ) ( ) ( ) ( )

output input

n c d ci i

SNRImp dB SNR SNR

x i x i x i x i

= −

= − −∑ ∑
     (10) 

where xc denotes the clean signal, xn represents the noisy 
signal, xd is the denoised one. 

To set a benchmark, we have also implemented the 
window-based EMD denoising scheme which employs a 
window to preserve the QRS complex. It’s worth noting 
that in this scheme we adopt the significance test 
procedure (see Section III C) to identify noise-dominant 
IMFs instead of the t-test method used in [11]. 

 
4.1. Test on real ECG 
 

We arbitrarily choose ECG records from the database 
as clean signals, and add white Gaussian noise to them to 
generate noisy ECGs. Then, we utilize both the proposed 
method (M-EMD) and the benchmark method (W-EMD) 
to denoise them. Denoising results SNRImp are listed in 
Table 1, where input SNRs include 15dB, 9dB and 3dB. 

As we can see from Table 1, the SNRImp increases as 
the input SNR decreases, for both “W-EMD” and “M-
EMD”. Moreover, the proposed method produces higher 
SNRImps than the window-based method does, especially 
when the input ECG SNR is low (e.g. 3dB). 

Table 1. SNRImp(dB) for real ECG 
Record

No. 

W-EMD M-EMD 

15dB 9dB 3dB 15dB 9dB 3dB 
100 4.13 6.30 7.79 5.05 8.09 9.82 
106 4.27 6.44 7.65 5.39 7.88 9.73 
123 4.06 7.09 8.15 5.62 8.61 10.89
220 4.52 6.88 7.53 5.82 8.17 9.37 
230 5.20 7.13 7.82 6.29 8.33 9.29 

Mean 4.44 6.77 7.79 5.63 8.22 9.82  
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Figure 8.  Denoising result for Record 123. 



In Fig 8, a portion of Record 123 from the database is 
illustrated, together with the relevant 9dB noisy ECG and 
the denoised result using our method. As it’s shown, the 
resultant ECG tracks the clean one closely and smoothly, 
producing a SNRImp 8.61dB, which means that the output 
SNR has been increased to 17.61dB.  

However, a close examination of the so-called clean 
ECG reveals that it’s not as clean as expected, containing 
considerable high frequency fluctuations. Consequently, 
interpretation of SNRImps obtained above would suffer 
questions, especially when input SNR is high. For 
example, in experiments with 24 dB input, the SNRImp is 
negative sometimes, though the resultant ECG has 
smoothly tracked the clean one. Since a negative SNRImp 
indicates an inferior result after denoising, it fails to 
reflect the actual case accurately. To explore the 
performance in high-input-SNR situations, we carry out 
another test using synthetic ECG in the next section. 

  
4.2. Test on synthetic ECG 
 

The synthetic ECGs are generated using ECGSyn [17], 
and then contaminated by white Gaussian noise as before. 
Since we mainly focus on high-input-SNR cases, the 
SNRs of noisy ECGs are ranged from 15dB to 30dB. As 
shown in Table 2, the SNRImps for such high-SNR inputs 
are still positively large, which demonstrates the desirable 
performance of our method. In the lower of Figure 9, the 
denoising result is so close to the clean ECG that they can 
hardly be discerned with unaided eye.  
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Figure 9.  Denoising result for synthetic ECG 

5. Conclusion 
 

Empirical mode decomposition (EMD) is an excellent 
tool for analyzing nonstationary and nonlinear data, and 
can easily be applied to biomedical signal denoising. 
However, direct EMD denoising is not suitable for ECG, 

for the R wave is quite high and sharp, and therefore 
easily deformed. In this paper, a model-based ECG 
denoising method using the EMD algorithm is described. 
Considering the simpleness and flexibility of the ECG 
model, we use it to pre-filter the ECG and thus preserve 
the feature waves of ECG, then apply EMD to denoise the 
residual signal, and finally combine the model and the 
denoised residue. Experimental results demonstrate that 
our method can serve as a good tool for ECG denoising. 
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