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Abstract— Localization is an essential problem in au-
tonomous navigation of self-driving cars. We present a monoc-
ular vision based approach for localization in urban envi-
ronments using road markings. We utilize road markings as
landmarks instead of traditional visual features (e.g. SIFT) to
tackle the localization problem because road markings are more
robust against changes in perspective , illumination, and across
time. Specifically, we employ Chamfer matching to register
edges of road markings against a lightweight 3D map where
road markings are represented as a set of sparse points. By
only matching geometry of road markings, our localization algo-
rithm further gains robustness against photometric appearance
changes in the environment. We take vehicle odometry and
epipolar geometry constraints into account and formulate a
non-linear optimization problem to estimate the 6 DoF camera
pose. We evaluate the proposed method on data collected in
the real world. Experimental results show that our method
achieves sub-meter localization errors in areas with sufficient
road markings.

I. INTRODUCTION

The development of self-driving vehicles has made sig-
nificant progress thanks to the advancements in perception,
motion planning, and emerging sensing technologies. To
achieve fully autonomous navigation, accurate localization
is required. While GPS can provide global position informa-
tion, it suffers from the notorious multipath effects in urban
environments. Therefore, alternative methods are needed for
localization in GPS-challenged environments.

The basic idea of localization is to match sensor observa-
tions against an a priori known map. Maps can be generated
by human surveying or robotic mapping using a variety
of sensors. LiDAR is a widely used sensor for mapping
because it can provide accurate range measurements. A
common approach is to use LiDAR in the mapping process
as well as localization. However, the cost of LiDAR is
too high for wide spread deployment. On the other hand,
cameras are low-cost and lightweight, but visual mapping
is challenging due to the lack of direct range measurement.
Thus, an alternative solution is to adopt low-cost sensors
(e.g., cameras) in localization and high-cost sensors (e.g.,
LiDAR) for mapping. The rationale is that maps need to be
very accurate but do not need to be generated/updated as
frequently as localization. The challenge is how to match
measurements against maps that are constructed from differ-
ent sensing modalities. In particular, researchers have studied
monocular camera-based localization in 3D LiDAR based
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Fig. 1: (a) Overview of our proposed optimization based
localization system. (b) Map (red points) projected into the
camera view using the camera pose obtained by optimization.

maps. For example, in [1] the map is augmented with surface
reflectivity measurements such that synthetic views of road
plane can be generated and matched against camera images;
in [2] 3D points reconstructed by visual SLAM are matched
against the maps generated by LiDAR SLAM.

In this work, we utilize a monocular camera to localize
itself in a map which is not generated by cameras. The
map is constructed by manually labeling landmarks in a 3D
environment created by registering 3D LiDAR point clouds.
As shown in Figure 1, our map consists of sparse 3D points



representing landmarks (e.g., road markings). Unlike [1],
we only match geometric features of the road rather than
photometric features. The reason is twofold. First, our map
does not contain much appearance information about land-
marks; second, matching geometry allows robust localization
against appearance or illumination changes. In this paper,
we present a method of tracking the 6 DoF camera pose
within a given map. For each image, the proposed system
detects edges of road markings, and computes Chamfer
distance between the detected edges and the projected road
marking points in the image space. Then, we formulate
a non-linear optimization problem to estimate the camera
pose. The formulation takes into consideration the Chamfer
distance, the vehicle odometry and epipolar constraints. Our
system also detects localization failures and re-localizes itself
after failures. Experimental results show that our method
achieves sub-meter localization errors in areas with sufficient
road markings.

II. RELATED WORK

Our work belongs to the area of robot localization [3],
which refers to the process of inferring position and orienta-
tion of a robot within a given map. Maps can be generated
by robotic mapping [4] or SLAM (simultaneous localization
and mapping) [5].

The core of localization process is to match sensor mea-
surements against maps. Therefore, localization approaches
can be classified by sensing modalities and map represen-
tations. One category of localization methods utilizes the
same type of sensor for localization and mapping, which can
largely simplify the matching problem. 3D LiDAR is a pop-
ular choice due the high precision of range measurements.
In [6] 3D LiDAR is employed to first map road surfaces
and then localize a vehicle by correlating ground reflectivity.
In [7] 3D LiDAR is used to generate 3D maps represented
by Gaussian mixtures and localization is done by registering
3D point clouds with maps. The limitation of 3D LiDAR
based approaches lies in the high sensor cost. In contrast,
cameras are low-cost and lightweight. There is a large body
of literature in visual localization using visual landmarks. For
example, Se et al. create a database of visual landmarks from
SIFT points [8] and then localize a camera by SIFT match-
ing [9]. In [10] Cummins and Newman localize a camera
by matching the current image against an image database
using bag-of-words techniques [11]. The drawback of using
camera for both localization and mapping is twofold. First,
it is hard to obtain high accuracy in visual mapping/SLAM
because cameras do not observe range information. Second,
visual matching quality in localization can easily be affected
by time, perspective and illumination changes.

To overcome the limitations mentioned above, researchers
have studied the use of different sensing modalities in
localization and mapping. In the mapping stage of [1],
3D LiDAR based SLAM is applied to reconstruct the 3D
structure of the environment, and a dense ground-plane mesh
augmented with surface reflectivity is constructed afterward;
in the monocular camera based localization stage, synthetic

views of the ground plane are generated and compared with
the camera live view to infer the current pose. In contrast,
our work does not require synthetic views generated by GPU
as in [1] because our map is much more lightweight. In the
visual localization process of [2], a local 3D map is recon-
structed from image features using visual odometry (ORB-
SLAM [12]), and then aligned with a given 3D LiDAR point
could map using ICP-like techniques [13]. By only matching
geometric structures, this method gains robustness against
changes in the photometric appearance of the environment.
Our approach is similar to [2] in the sense of merely relying
on geometry matching. However, our approach can work
with single static images while [2] requires a sequence of
images with camera motion for reliable 3D reconstruction.

Besides sensing modalities, the selection of features or
landmarks also plays a critical role in localization and
SLAM. In LiDAR based approaches, landmarks can be plain
point clouds or geometric structures like corners, ridges and
planes. LiDAR data is typically matched using ICP [13] and
its variants. In the domain of visual localization, interest
points such as SIFT [14] are often used as landmarks.
Matching of interest points is usually done by finding nearest
neighbors [15] in high dimensional descriptor space. Alter-
native visual features like edges [16], lines [17], vanishing
points [18] and their combinations [19], [20] have also been
investigated for their robustness to illumination. In addition,
higher level landmarks are also of great interest because
they are closer to what humans exploit for navigation [21],
[22]. In the work of [23], objects like tables and chairs are
treated as landmarks for SLAM. In the context of vehicle
navigation, road markings are a very useful type of high level
landmarks. For example, Wu and Ranganathan [24] detect
road markings such as arrows using MSER [25] and achieve
robust localization against lighting changes. However, they
use a stereo camera and assume a flat ground, whereas
we employ a monocular camera and make no flat ground
assumption.

To handle measurement noises and sensor fusion, vari-
ous estimation frameworks are adopted in localization and
SLAM. Kalman filtering is a popular approach (e.g. [26])
because of its simplicity and efficiency, though it assumes
linear models and Gaussian noise. Particle filtering is also
widely utilized [6] because it does not assume any noise
model. However, particle filtering suffers from the curse of
dimensionality. For visual SLAM, there are two dominant
frameworks: filtering [27] and bundle adjustment [28], [29].
It is shown that bundle adjustment approaches can achieve
higher accuracy due to the re-linearization when solving
the non-linear optimization [30]. Thus, to obtain better
localization accuracy our work adopts an optimization based
framework for camera pose estimation.

III. BACKGROUND AND PROBLEM DESCRIPTION

A. Map

Our maps are provided by a mapping company and consist
of a variety of elements including road markings, curbs,
traffic signs, etc. In this paper we only use two types of
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Fig. 2: (a) Map elements used for localization. (b) Map
features stored in texts. Grayed out parts are information
not yet used in our system.

road markings: solid lines and broken lines. As illustrated in
Figure 2(a), solid lines usually come from lane or crosswalk
boundaries, while broken lines typically exist between lanes.
The rationale of choosing this subset of map elements is
twofold. First, they can be more frequently observed than
other elements like speed limit signs and turning arrows.
Second, they are relatively easy to detect from images due
to their distinctive appearance and large sizes as opposed
to curbs and traffic signs. In the rest of this paper, “road
marking” only refer to the selected types of road markings.

The road markings are concisely stored in text files and
grouped by geographic locations. As illustrated in Fig-
ure 2(b), a road marking feature is represented by a set of
3D points (sampled along its center line) along with other
information such as width and color.

B. Notations

Denote a road marking by Mi := {mi,j ∈ R3|j =
1, · · · , ni} with ni being the total number of points.

We assume that the camera is pre-calibrated (i.e. intrinsic
matrix K is known) with radial distortion removed. Let Ik be
the image captured at time k. Define Pk := {Rk, tk} to be
the camera pose w.r.t. the map at time k, with Rk ∈ SO(3)
the rotation matrix and tk ∈ R3 the translation vector.

We assume that an odometer is available to provide relative
motion between adjacent camera frames. Let Dk be the
rigid transformation between Ik−1 and Ik measured by the
odometer.

The problem is given a map, images, and odometry up to
time k, estimate the camera pose Pk w.r.t. the map.

IV. SYSTEM

Let us assume that the system has been initialized (we
defer system initialization until Section IV-E). As illustrated
in Figure 1(a), at time k we detect edges of road markings
in Ik. In the same time, we predict the camera pose P′k
using the pose estimate from the previous frame Pk−1
and odometry data Dk. We retrieve a subset of the map
in neighborhood of P′k. Then we refine the camera pose
through optimization and obtain Pk. Let us start with feature
detection.

A. Feature detection

We detect road markings by extracting their contours.
However, generic edge detectors produce too many irrelevant
edges (i.e. false positives). Here we adopt a random forest
based edge detector [31] and retrain it with our own image
data. A random forest is a collection of independent decision
trees. Each tree is given the same input sample and classifies
it by propagating it down the tree from the root node to a
leaf node. By presenting an initial untrained decision tree
with many input and output mappings, the parameters of its
internal splitting functions will gradually evolve and produce
similar input-output mappings. This learning process is made
possible by defining an information gain criterion. Parame-
ters resulting in maximum information gain are rewarded.

B. Feature matching

As mentioned in Section III-A, a road marking is rep-
resented by a small set of 3D points. From odometry
information we can predict the camera pose P′k at time k and
then project the points of road markings into the image space.
To evaluate how well the projected points match against the
detected image feature, we use Chamfer matching which
essentially associates each projected point to a nearest edge
pixel. Chamfer distance can be efficiently computed from
distance transform [32]. To account for orientation, we divide
edge pixels into different groups by their gradient direction
and compute the distance transform accordingly.

C. Map retrieval

Given a predicted camera position, we select a subset of
road markings from the map that are within a certain distance
(80 m) to the camera. On wide roads with center islands,
road markings on the other side of road may be occluded
and thus missed in the edge detection. Since we do not have
information about the center island in the map, we can not
predict occlusions. Our solution to this problem is that on
wide roads (over 15 m) we only use road markings on the
side where the vehicle drives. This is sufficient on wide roads
which typically have multiple lanes in one direction. Narrow
roads usually do not have center islands which means we
can use lane markings from both driving directions.

As the map does not contain directional information of
road markings, we need to identify the road markings on the



same side as the vehicle. From the local map, we first detect
curbs on each side, and then figure out the road width as the
distance between two curbs. If the road width is larger than
15 m, we forgo road markings located on the other side of
the road. Note that curbs are not used for matching because
they are more difficult to detect in images.

D. Optimization

To estimate the camera pose, we not only use Chamfer
matching, but also take other constraints into account.

Chamfer distance. Let Ck be the distance transform
computed from the edge image. For any point x on Ik,
we can query its Chamfer distance Ck(x) from Ck by
interpolation. Let π(P,X) be the projection function that
projects a 3D point X from the world frame to the image
with pose P. Suppose Mk is the set of road marking points
that are in the camera view according to the predicted camera
pose P′k. We define

Cchf(Pk) =
∑

X∈Mk

Ck(π(Pk,X)) (1)

Road markings may not always pose sufficient constraints
on camera pose estimation, for example, when there is only
a straight solid lines in the view. We add the following extra
constraints in the estimation process.

Epipolar constraint. Suppose xi,k−1 ↔ xi,k is a pair
of image points from Ik−1 and Ik, respectively, and they
correspond to the same 3D point. The epipolor constraint is

x̃T
i,k−1Fx̃i,k = 0 (2)

where F is the so-called fundamental matrix, and x̃ denotes
the homogeneous coordinates of x. For a calibrated camera,
F is determined by the relative pose between two views.
Define

k−1Rk := RT
k−1Rk

k−1tk := RT
k−1(tk − tk−1). (3)

One can verify that {k−1Rk,
k−1 tk} is the relative rigid

transformation between Pk−1 and Pk. The fundamental
matrix can be computed

F = K−T [k−1tk]×
k−1RkK

−1 (4)

where [k−1tk]× is the matrix representation of the cross
product with k−1tk.

Given a set of point correspondences {xi,k−1 ↔ xi,k, i =
1, · · · } between Ik−1 and Ik, we define

Cepi(Pk−1,Pk) =
∑
i

x̃T
i,k−1Fx̃i,k. (5)

We use SURF points [33] in the epipolar constraints.
Eq. (5) only poses constraints on 5 DoFs of camera pose
because physical scale is not observable by a monocular cam-
era. Therefore, we use the odometry for another constraint.

Odometry constraint. Recall that Dk is the rigid trans-
formation between Ik−1 and Ik measured by the odometer.
Since epipolar constraint already covers 5 DoFs, we only
use the translation magnitude of Dk as a constraint. Let dk

denote the magnitude of the translation component of Dk.
We define

Codm(Pk−1,Pk) =
(
dk −

∣∣k−1tk∣∣)2 . (6)

Optimization formulation. Given Pk−1, we estimate Pk

by minimizing the following cost function

C(Pk) = Cchf(Pk) + Cepi(Pk−1,Pk) + Codm(Pk−1,Pk).
(7)

This problem can be solved using the Levenberg-Marquardt
algorithm.

E. Initialization and reset

To initialize the system, we assume a rough estimate
of the camera pose, which can be obtained from GPS or
other sources. This initial estimate is usually too far from
the true solution for the optimization to work. Instead, we
need to exhaustively search for a good estimate. To do so,
we randomly sample a large set of candidate poses around
the rough estimate in the parameter space, and find one
that minimizes C(Pk). With the best candidate as an initial
solution, we further minimize C(Pk).

We also monitor the localization performance by checking
the Chamfer distance. A large Chamfer distance can indicate
a wrong localization estimate. We consider the system to
be failed when consecutive large Chamfer distances occur.
In case of system fail, we reset the system using the same
strategy as for initialization. The only difference is that we
sample candidates around the current pose estimate.

V. EXPERIMENTS

We have implemented our system in C++ under Linux. We
collect image data using a forward-looking camera (Point-
Grey GS3-PGE-23S6M-C) mounted on our test vehicle. The
image resolution we use is 864 × 540 (down-sampled from
1920× 1200 for speed). We first evaluate our road marking
detection.

A. Feature detection test

We compare our road marking detection results against the
following algorithms: Canny edge detection [34], the original
random forest based edge detector [31] denoted by RF-org,
and a lane marker detection (LMD) algorithm [35]. We use
RF-re to denote the random forest based edge detector re-
trained using our road marking data.

We have collected a set of 675 images with manually
annotated road markings (see Figure 3 for example), avail-
able to the public1. We randomly choose 457 images for
training, and the rest for testing. Figure 3 shows four testing
images and the outputs of all edge detection algorithms.
In Figure 4, we plot the precision-recall curves for each
method by varying their respective thresholds. Note that
LMD only results in one point because it does not support
easy thresholding. In the precision-recall plane, the upper
right corner represents the ideal detection result. It is clear
that RF-re outperforms the rest by a large margin. In fact, this

1http://datasets.honda-ri.com/roadmark



Input Ground truth RF-re RF-org Canny LMD

Fig. 3: Sample images for feature detection comparison. Ground truth are binary images with black indicating true edges.
The results of RF-re and RF-org are grayscale images, where darker pixels have stronger belief of being edges. Canny
outputs are obtained by setting a high threshold, but false positives still exist. LMD outputs are binary, showing a high false
negative rate.
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Fig. 4: Precision-recall curves for edge detection algorithms
in comparison. Note that LMD only presents a single point
because no easy thresholding is allowed by the algorithm.

is not surprising because generic edge detectors like Canny
and RF-org produce too many false positives while LMD
produces too many false negatives, as illustrated in Figure 3.

B. Localization test

We now evaluate our localization system using real map
and data. Our current map covers an area of approximately
1000×500 m2 as shown in Figure 5. We collected two sets
of data: Dateset A in May 2016, Dataset B in August 2016.

Blue : Continuous line

Green : Broken line

Red : Crosswalk

Road marking map Test route

Fig. 5: Left: Localization test map. Right: The test route
superimposed on Google map. Note that in one segment of
the road, only a center broken line is available in the map,
providing rather weak geometric constraints. In such case
our algorithm is inapplicable and thus not tested.

Both datasets traverse the same route, which is approximately
2.25 km long (see Figure 5). We use high grade GPS/INS
system (OxTS RT3000) to provide ground truth.

Our test data contains many challenges, some of which are
illustrated in Figure 6. For example, a new crosswalk was
built after the map had been generated, some lane markings
were almost invisible due to fading, vehicles caused severe
occlusions of lane markings, strong shadows posed problems
to the edge detector, and road work altered the appearance
of the scene.

Due to the uniqueness of our sensor and map configura-
tion, it is hard for us to benchmark the proposed method
with existing algorithms. As a baseline, we also evaluate
our system when using the generic edge detector RF-org
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Fig. 6: Localization challenges presented in our test data.

for road marking detection as RF-org works better than
Canny and LMD. Although our system estimates 6 DoF
pose, we only compute longitudinal, lateral, and heading
errors here because the GPS/INS estimate of altitude is not
as reliable as longitude or latitude. The error distributions
obtained by the proposed method are illustrated in Figure 7
and Figure 8 for each dataset, respectively. We see that the
lateral error distributions seem to be biased, which can be
attributed to the imperfection in the ground truth and map.
If such imperfection did not exist, our localization errors
should be even smaller because the projected map points in
images usually align well with the road marking edges, see
Figure 1(b) or supplemental materials for example.

In Table I, we report the root mean square (RMS) errors
of the proposed method and the baseline. We can see that the
proposed method achieves sub-meter localization errors on
both datasets despite the fact that they are acquired months
apart. This demonstrates the robustness of our system against
changes over time. In addition, the proposed method clearly
outperforms the baseline, which further justifies the necessity
of re-training the random forest based edge detector with
road marking data.

VI. CONCLUSION & FUTURE WORK

Localization is a prerequisite for autonomous driving.
In this paper we presented a monocular vision based lo-
calization algorithm for navigation in urban environments
using road markings. We chose road markings as landmarks
for localization instead of traditional visual features (e.g.
SIFT) because road markings are more robust against time,

TABLE I: RMS ERRORS FOR LOCALIZATION.

Dataset Method Longitudinal(m) Lateral(m) Heading(◦)

A Baseline 0.426 0.857 1.03
Proposed 0.239 0.595 0.84

B Baseline 0.509 0.867 1.24
Proposed 0.271 0.679 0.91

Despite various challenges presented in the test data, the proposed method
obtains sub-meter level errors. Note that Dataset A and B are collected
on the same route in May 2016 and August 2016, respectively.

perspective and illumination changes. We employed Chamfer
matching to register the detected road markings in an image
against their representations in a lightweight map. We further
took vehicle odometry and epipolar geometry constraints into
account and formulated a non-linear optimization problem to
obtain the 6 DoF camera pose. We evaluated the proposed
method on data collected in the real world. Experimental
results showed that our method achieved sub-meter localiza-
tion errors despite that the data were collected months apart.
In the meantime, we are aware that the proposed method
is not applicable when road markings are absent or sparse.
Therefore, we will investigate using other types of landmarks
in the future to achieve more robust localization.
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Fig. 7: Error histograms of Dataset A. From left to right: longitudinal (m), lateral (m), and heading (degree).
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