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Abstract

Lighting variation and uneven feature distribution are
main challenges for indoor RGB-D visual odometry where
color information is often combined with depth informa-
tion. To meet the challenges, we fuse point and line fea-
tures to form a robust odometry algorithm. Line features
are abundant indoors and less sensitive to lighting change
than points. We extract 3D points and lines from RGB-D
data, analyze their measurement uncertainties, and com-
pute camera motion using maximum likelihood estimation.
We prove that fusing points and lines produces smaller
motion estimate uncertainty than using either feature type
alone. In experiments we compare our method with state-of-
the-art methods including a keypoint-based approach and a
dense visual odometry algorithm. Our method outperforms
the counterparts under both constant and varying lighting
conditions. Specifically, our method achieves an average
translational error that is 34.9% smaller than the counter-
parts, when tested using public datasets.

1. Introduction

For GPS-denied indoor environments, visual odometry
is an attractive, low-cost alternative to laser-based robot lo-
calization approaches. The recent emergence of RGB-D
cameras (e.g. Kinect) significantly enhances visual odom-
etry performance by providing pixel-wise depth measure-
ments. Besides the relative short range and the limited accu-
racy of existing RGB-D technologies, the main challenges
come from large lighting condition variations and uneven
feature distributions. The former directly hinders direct ap-
proaches (e.g. the dense method in [12]) which are based on
the photo-consistency assumption. The latter often corrupts
feature tracking quality in feature-based approaches.

Building on feature-based approaches and with the chal-
lenges in mind, we propose a robust RGB-D odometry
method by fusing point and line features (see Figure 1).
Line features are abundant indoors and less sensitive to
lighting variation than points. On the other hand, points pro-
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Figure 1: System diagram.

vide less position ambiguity than that of lines if sufficient
observations are available. Effectively combining those de-
sirable properties would increase both accuracy and robust-
ness for an odometry method. We extract 3D points and
lines from RGB-D data and analyze their measurement un-
certainties. We provide a framework that seamlessly fuses
points and lines by adopting a RANSAC-based motion es-
timation, followed by a maximum likelihood estimation
(MLE)-based motion refinement. Under Gaussian noise as-
sumption, we prove that fusing points and lines results in
smaller uncertainty in motion estimation than using either
feature type alone.

Our method has been evaluated on real-world data in
experiments. We compare its performance with state-of-
the-art methods including a keypoint-based approach and a
dense visual odometry algorithm. Our method outperforms
the counterparts under both constant and varying lighting
conditions. Specifically, our method achieves an average
translational error that is 34.9% smaller than the counter-
parts, when tested using public datasets.

2. Related work

Our work belongs to visual odometry, which estimates
camera trajectories (or poses) from a sequence of images.
Visual odometry is considered as a subproblem of visual



simultaneous localization and mapping (SLAM).
Many visual odometry works have been developed us-

ing regular passive RGB cameras as the primary sensor, in
monocular [18, 20], stereo [24], or multi-camera settings.
To improve accuracy, researchers study visual odometry
from different perspectives. For example, Strasdat et al.
[31] analyze two prevalent approaches to visual SLAM and
find that bundle adjustment (e.g. [13]) produces more ac-
curate results than sequential filtering (e.g. [6, 19]). Due
to depth ambiguity, monocular visual odometry inevitably
suffers from scale drift, which can be easily avoided by us-
ing an RGB-D camera [30]. Besides accuracy, robustness
is another critical issue but lags behind in visual odometry
development. Lighting variation and uneven feature distri-
bution are two main challenges for robustness.

Lighting variations caused by either natural or artifi-
cial lighting challenges both direct visual odometry and
feature-based methods [21]. Although direct approaches
can achieve superior accuracy by doing pixel-wise registra-
tion [12, 23, 37], their fundamental assumption on photo-
consistency makes them sensitive to lighting condition
changes. In the feature-based category, data-driven ap-
proaches are proposed to learn lighting-invariant descrip-
tors [4] and matching functions [25] for robust matching of
feature points. However, point features are also prone to
illumination variations at the detection stage. On the other
hand, the detection of edge and line features is less sensitive
to lighting changes by nature. Edges [7], line segments [14]
and lines [29] have been applied to visual odometry/SLAM,
though their accuracy is usually not comparable with that
of point features. In addition to regular approaches, RGB-
D odometry can also utilize point could registration meth-
ods, which originate from Lidar-based SLAM. This kind of
method [22] is invariant to lighting changes, but the prob-
lem is that it easily fails in degenerated cases, e.g. when a
plane dominates the scene.

Meanwhile, uneven feature distribution hinders all
feature-based visual odometry algorithms. In RGB-D
odometry, points are the most popular type of visual fea-
ture. For example, in Henry et al.’s RGB-D mapping sys-
tem [10], keypoints are extracted from RGB images and
back-projected into 3D using depth data. Endres et al. [8]
present an open-source RGB-D SLAM system based on
point features. These approaches can be drastically affected
if the distribution of point features is largely uneven, e.g.
when textureless surfaces dominate the scene. To overcome
this shortcoming, other types of features are investigated in
RGB-D odometry. Points and planes are jointly utilized in
Taguchi et al.’s work [33], which uses any combination of
three primitives of points and planes as a minimal set for
initial pose estimation in RANSAC. Planes are adopted as
the primary feature in [26] for visual odometry, and points
are utilized only when the number of planes is insufficient.

However, the applications of these methods are limited to
plane-dominant environments. A 3D edge-based approach
is proposed by Choi et al. [5], which treats edges as down-
sampled point clouds and uses ICP. In [17] we detect 3D
lines and analyze their uncertainties for RGB-D odometry.
Here we further fuse line features with point features to im-
prove the robustness of RGB-D odometry. We analyze the
uncertainties of motion estimation to show the benefit of
feature fusion.

3. Problem description and system overview

We assume the RGB-D camera to
a.1 be pre-calibrated, with lens distortion removed, and
a.2 have its depth image pixel-wisely synchronized with

the corresponding color image.
Define an RGB-D frame at time k to be Fk := {Ik, Dk},

where Ik andDk denote the color and depth images, respec-
tively. The local coordinate system of Fk is the same as the
RGB camera coordinate system (right-handed, Z-axis pass-
ing the camera center pointing forward, and X-axis point-
ing rightward). We define our problem as follows.

Problem 1 (Visual odometry). Given an RGB-D sequence
{Fk}, k ≥ 1, estimate the camera pose of each frame with
respect to a world coordinate system.

To solve Problem 1, we estimate camera motion using
adjacent RGB-D pairs, namely, F and F ′. We compute a
3D rigid transformation between F and F ′.

Our system (see Figure 1) mainly consists of feature
detection and motion estimation. In the feature detection
stage, for each RGB-D frame we detect point and line fea-
tures from the color image, back-project them to 3D, and
analyze their uncertainties in parallel. In the motion estima-
tion stage, we find feature matching between two RGB-D
frames and estimate the relative motion using points and
lines in a joint manner.

4. Feature detection & uncertainty analysis

Errors inevitably enter the system at the feature detection
stage. Eventually, the errors propagate to motion estimation
results. For a deep understanding of the system accuracy,
we begin with uncertainty analysis for each feature type.

4.1. Point detection & uncertainty analysis

Detection. Given an RGB-D frame F , we first detect
a set of 2D points from color image I using interest point
detection algorithms such as SURF [3] (see Box P1, Fig-
ure 1). Then we find the depth values, if available, for these
2D points from D. Supposing a 2D point p = [u, v]T in I
has depth d, its 3D position w.r.t. F is computed as follows



(see Box P2, Figure 1)

P :=

xy
z

 =

(u− cu)d/fc
(v − cv)d/fc

d

 , (1)

where [cu, cv]
T and fc are the principal point and focal

length of the RGB camera, respectively.
Uncertainty. As a function of

[
pT, d

]T
, P has a mea-

surement uncertainty depending on the error distribution of[
pT, d

]T
. The noise distribution of p is modeled as a zero-

mean Gaussian with covariance σ2
p I2, where I2 is a 2×2

identity matrix. The measurement error of d is determined
by many factors such as the imaging sensor, depth interpo-
lation algorithm, and depth resolution. Taking the Kinect
used in this paper for example, it is commonly agreed that
the depth noise is a quadratic function of the depth it-
self [28]. Specifically, the standard deviation (SD) σd of
d is modeled as

σd = c1d
2 + c2d+ c3, (2)

where c1, c2 and c3 are constant coefficients. We set c1 =
2.73×10−3, c2 = 7.4×10−4, and c3 = −5.8×10−4 in our
experiments and the unit of d is meter [28].

Assuming the measurement noise of p is independent of
that of d, we have

cov
([

p
d

])
=

[
σ2
pI2 02×1

01×2 σ2
d

]
, (3)

where cov(·) indicates the covariance matrix of a random
variable, and 0m×n means a zero matrix of size m × n.
Under first-order approximation, we have (see Box P3, Fig-
ure 1)

cov(P) = JP cov
([

p
d

])
JT
P , (4)

where JP = ∂P
∂(p,d) =

d/fc 0 (u− cu)/fc
0 d/fc (v − cv)/fc
0 0 1

 .
4.2. Line detection & uncertainty analysis

In this section, we introduce a 3D line detection method
by considering cues from both color and depth data. To
handle RGB-D data noise, we also present how to optimally
estimate the detected 3D lines and analyze the uncertainties
of the estimates. Our method starts from 2D line detection.

4.2.1 Line detection in 2D and 3D

Under the pinhole camera model, lines remain straight
when projected from 3D to images. Therefore, to detect
3D lines we first detect their projections in the color image
I (see Box L1, Figure 1). As long as a 3D line is visible in

I , it appears as a 2D line segment. Here we employ the line
segment detector LSD [35] to extract a set of 2D line seg-
ments S2D = {si|i = 1, 2, · · · } from I . Each line segment
is represented by two endpoints si =

[
aTi ,b

T
i

]T
.

A naive way to obtain the 3D position of a 2D image line
segment is to back-project its two endpoints to 3D using the
depth map. However, this method does not work well in
practice for two reasons: 1) Depth corruption: depth infor-
mation is not always available, especially on object bound-
aries when the depth is discontinuous, and 2) Perspective
ambiguity because a line segment in S2D does not neces-
sarily correspond to a line segment in 3D as a result of the
perspective projection. This ambiguity cannot be resolved
by only checking the 3D positions of the two endpoints of
the 2D line segment. This suggests that we should inspect
more depth information of a 2D line segment to avoid the
aforementioned issues. As a line segment consists of infi-
nite number of points, we propose a sampling based method
for 3D line detection.

Sampling. Given a 2D line segment s, we sample ns
points evenly spaced on s as illustrated in Figure 2. In all
experiments, we set ns = min(100,

⌊
‖s‖
⌋
), where ‖s‖ de-

notes the length of s (in pixels) and b·c is the floor func-
tion. We discard the sample points whose depths are un-
available, back-project the remaining points to 3D (see Box
L2, Figure 1) using (1), and compute their 3D uncertainties
using (4).

The 3D sample points obtained above are not necessarily
from a 3D line, and even if they are, they may contain out-
liers due to large depth errors. As illustrated in Figure 2, we
apply RANSAC to detect the existence of 3D line segments
and filter out outliers (see Box L3, Figure 1). For brevity,
we skip every detail of RANSAC but the error metric used
for identifying inlier/outlier. Given a 3D line and a 3D point
observation (subject to measurement noise), we utilize the
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Figure 2: Sampling-based 3D line segment estimation.
From a 2D line segment, ns evenly-spaced points are sam-
pled. The sample points are back-projected to 3D using
depth information. Then a 3D line segment is fitted to these
3D points using RANSAC and Mahalanobis distance-based
optimization.



Mahalanobis distance between them to evaluate whether the
point is an observation of a point on the line. Mahalanobis
distance is widely used in computer vision because it pro-
duces the optimal estimate under Gaussian assumptions [9].
For completeness, we briefly describe how to compute the
Mahalanobis distance.

Mahalanobis distance. Let P be a 3D point measure-
ment with covariance Σp and L be an infinite 3D line. The
Mahalanobis distance from P to L is defined as

dMAH(P,L) = min
Q∈L

√
(P−Q)TΣ−1

p (P−Q), (5)

where Q ∈ L indicates an arbitrary point lying on line L.
To derive dMAH(P,L), let A and B be two reference points
on L. Write Q = A+λ(B−A), λ ∈ R. The minimization
problem in (5) is then equivalent to minimizing the follow-
ing univariate quadratic function.

min
λ

λ2(B−A)TΣ−1
p (B−A) + 2λ(B−A)TΣ−1

p (A−P)

+(A−P)TΣ−1
p (A−P)

The optimal value of λ yields the optimal Q for (5) Q∗ =

A− (B−A)TΣ−1
p (A−P)

(B−A)TΣ−1
p (B−A)

(B−A). Let

δ(P,L) = P−Q∗, (6)

and then we have,

dMAH(P,L) =

√
δ(P,L)TΣ−1

p δ(P,L). (7)

4.2.2 Line uncertainty under MLE

Suppose the size of the largest consensus set returned by
the aforementioned RANSAC process is ncon. Recall that
ns points are originally sampled from the 2D line segment
s. If ncon/ns is below a threshold τ (0.6 in all experi-
ments), it implies that we do not have sufficient depth in-
formation to retrieve the 3D position of the line segment s.
If ncon/ns ≥ τ , we proceed to apply MLE to obtain the 3D
line segment.

Let the largest consensus set be {Gi|i = 1, · · · , ncon}
with G1 and Gcon being the two extremities. We
parametrize the 3D line segment L =

[
AT,BT

]T
to be

estimated by two 3D points associated with G1 and Gcon.
Define a measurement error function

w(L) =


G1 −A
δ (G2,L)

...
δ
(
Gncon−1 ,L

)
Gncon −B

 , (8)

where δ(·, ·) is defined in (6). The MLE of L is obtained as
follows,

L∗ = min
L
w(L)TΣ−1

w w(L), (9)

where Σw = diag
(
cov(G1), · · · , cov (Gncon)

)
is a block-

wise diagonal matrix. This problem is then solved us-
ing the Levenberg-Marquardt (LM) algorithm. From back-
propagation of covariance [9], we obtain the covariance of
the MLE (see Box L3, Figure 1)

cov(L∗) =
(
JT
wΣ−1

w Jw
)−1

, (10)

where Jw = ∂w
∂L

∣∣
L=L∗

.

5. Motion estimation & uncertainty analysis
With point and line features detected and the understand-

ing of their error covariance, we are ready to perform over-
all camera motion estimation for the adjacent frame pair and
analyze the uncertainty of the estimation.

5.1. Putative feature matching and RANSAC-based
motion estimation

Once 3D points and lines are detected from F and F ′,
we need to find feature correspondences between frames.
As both 3D points and lines have associated 2D points and
lines, we do feature matching using 2D features (see Boxes
P4 and L4, Figure 1). We compute the SURF descriptors [3]
for points and the MSLD descriptors [36] for lines, respec-
tively. We adopt nearest-neighbour method in descriptor
space for the putative matching.

As putative matching inevitably contains false matching,
we use RANSAC to filter out outliers and estimate the 3D
rigid transformation (see Box 5, Figure 1). Up to this point,
points and lines have been processed in parallel. However,
in each iteration of RANSAC, a minimal set of data is ran-
domly sampled for a motion estimate; a seamless fusion of
points and lines should allow mixed features in a minimal
set. For this purpose, we consider the four possible types of
minimal sets as follows,

• 3 point matches. This can be trivially solved using
methods like [2, 34].
• 3 line matches. In fact the 3D rigid transformation can

be recovered by only 2 line matches using an SVD-
based method [38]. Considering that this method is
very sensitive to noise, we sample 3 line matches.
• 1 point + 2 line matches. In each frame, we orthog-

onally project the point onto the 2 lines, respectively,
which converts this case to a case of “3 point” matches.
• 2 point + 1 line matches. We choose one point and or-

thogonally project it onto the line in each frame, con-
verting this case to a case of “3 point” matches.

5.2. MLE of motion and uncertainty analysis

The RANSAC process results in a largest consensus set
of feature matches consisting of both point matches and line
matches. We refine the motion estimate with the whole con-
sensus set of point and line matches using MLE (see Box 6,



Figure 1). We prove that the MLE of 3D rigid transforma-
tion obtained using both types of feature correspondences
has smaller uncertainty than that obtained using either type
of feature correspondence alone. We start by deriving the
uncertainties for the MLE of motion obtained using points
and lines separately before fusing them.

5.2.1 Point-based motion estimation

Let the set of 3D point correspondences between F and F ′

be {Pi ↔ P′i, i = 1, · · · , n}, where n ≥ 3. Denote the co-
variance of Pi and P′i by Σi and Σ′i, respectively. The rigid
body transformation T is parametrized by a six-vector ξ. T
can also represented by rotation matrix R and translation
vector t,

T(X) := RX + t, (11)

where X is a 3D point.
To achieve an MLE of motion, the underlying 3D point

landmarks must be estimated simultaneously. Let Xi be the
3D point with respect to F that underlies the measurements
Pi and P′i. The parameter vector to be estimated is thus
defined as p =

[
ξT,XT

1 , · · · ,XT
n

]T
.

Define a measurement error function

h(p) =

[
hp

h′p

]
, (12)

where hp =

 X1 −P1

...
Xn −Pn

 and h′p =

 T(X1) −P′1
...

T(Xn) −P′n

 .

The MLE of motion solves the following problem

min
p
h(p)TΣ−1

h h(p), (13)

where Σh = diag
(
Σ1, · · · ,Σn,Σ′1 · · · ,Σ′n

)
. Lemma 1

provides the estimation uncertainty of motion.

Lemma 1. Under Gaussian noise assumption, the point
feature-based MLE of rigid transformation ξ obtained
by (13) has covariance

CP =
(
HA
h −HB

h H
D
h

−1
HB
h

T
)−1

, (14)

where

HA
h =

∑n
i=1

(
∂T(Xi)
∂ξ

)T
Σ′−1
i

∂T(Xi)
∂ξ

,

HB
h =


(
∂T(X1)
∂X1

)T
Σ′−1

1
∂T(X1)
∂ξ

...(
∂T(Xn)
∂Xn

)T
Σ′−1
n

∂T(Xn)
∂ξ


T

, and

HD
h = diag

(
Σ−1

1 +
(
∂T(X1)
∂X1

)T
Σ′−1

1
∂T(X1)
∂X1

,

· · · , Σ−1
n +

(
∂T(Xn)
∂Xn

)T
Σ′−1
n

∂T(Xn)
∂Xn

)
.

Proof. By back-propagation of covariance, the MLE of p
has covariance [9]

cov (p) =
(
JT
hΣ−1

h Jh
)−1

, (15)

with

Jh =
∂h

∂p
=

 JA
h JB

h

JC
h JD

h



=



0 I3 0 0

... 0
. . . 0

0 0 0 I3
∂T(X1)

∂ξ
∂T(X1)
∂X1

0 0

... 0
. . . 0

∂T(Xn)
∂ξ

0 0
∂T(Xn)
∂Xn


6n×3n+6

where I3 is a 3 × 3 identity matrix, and 0 indicates a zero
matrix of a context-determined size hereafter.

With Σ−1
h = diag

(
Σ−1

1 , · · · ,Σ−1
n ,Σ′−1

1 · · · ,Σ′−1
n

)
, we

derive JT
hΣ−1

h Jh =

[
HA
h HB

h

HB
h

T
HD
h

]
. Performing block-

wise matrix inversion on JT
hΣ−1

h Jh yields (14).

5.2.2 Line-based motion estimation

Let the set of 3D line correspondences between F and F ′

be {Li ↔ L′i, i = 1, · · · ,m}, where m ≥ 3. Recall that
Li =

[
AT
i ,B

T
i

]T
, L′i =

[
A′Ti ,B

′T
i

]T
. For simplicity, we

denote Λi = cov(L), Λ′i = cov(L′i) (see (10)).
For MLE of motion, the underlying 3D line landmarks

must be estimated simultaneously. Let Yi =
[
αT
i ,β

T
i

]T
be

the 3D line with respect to F that underlies the measure-
ments Li and L′i. The parameter vector to be estimated is
thus defined as q = [ξT,YT

1 , · · · ,YT
m]T.

Recall δ(Ai,Y) is a 3-vector function. Define

η(Li,Yi) =
[
δ(Ai,Yi)

T, δ(Bi,Yi)
T
]T
. (16)

Define a measurement error function

g(q) =

[
gl

g′l

]
, (17)

where gl =

 η(L1,Y1)
...

η(Lm,Ym)

 , g′l =

 η
(
L′1,T(Y1)

)
...

η (L′m,T(Ym))

 , and

T(Yi) :=
[
T(αi)

T,T(βi)
T
]T
. The MLE solves the fol-

lowing problem

min
q
g(q)TΣ−1

g g(q), (18)



where Σg = diag (Λ1, · · · ,Λm,Λ′1, · · · ,Λ′m) .

Lemma 2. Under Gaussian noise assumption, the line
feature-based MLE of rigid transformation ξ obtained by
(18) has covariance

CL =
(
HA
g −HB

g H
D
g

−1
HB
g

T
)−1

, (19)

where

HA
g =

∑
i

(
∂η(L′i,T(Yi))

∂ξ

)T
Λ′−1
i

∂η(L′i,T(Yi))
∂ξ

,

HB
g =


(
∂η(L′1,T(Y1))

∂Y1

)T
Λ′−1

1
∂η(L′1,T(Y1))

∂ξ

...(
∂η(L′m,T(Ym))

∂Ym

)T
Λ′−1
m

∂η(L′m,T(Ym))
∂ξ


T

,

HD
g = diag(C1, · · · ,Cm), and for i = 1, · · · ,m

Ci =
(
∂η(Li,Yi)

∂Yi

)T
Λ−1
i

∂η(Li,Yi)
∂Yi

+
(
∂η(L′i,T(Yi))

∂Yi

)T
Λ′−1
i

∂η(L′i,T(Yi))
Yi

.

Proof. By back-propagation of covariance, the MLE of q
has covariance [9]

cov(q) =
(
JT
g Σ−1

g Jg
)−1

, (20)

where

Jg =
∂g

∂q
=

 JA
g JB

g

JC
g JD

g


12m×6+6m

=



0
∂η(L1,Y1)

∂Y1
0 0

0 0
. . . 0

0 0 0
∂η(Lm,Ym)

∂Ym
∂η(L′1,T(Y1))

∂ξ

∂η(L′1,T(Y1))

∂Y1
0 0

... 0
. . . 0

∂η(L′n,T(Yn))

∂ξ
0 0

∂η(L′m,T(Ym))

∂Ym


With Σ−1

g = diag
(
Λ−1

1 , · · · ,Λ−1
m ,Λ′−1

1 · · · ,Λ′−1
m

)
, we

derive JgΣ−1
g Jg =

 HA
g HB

g

HB
g

T
HD

g

 . Performing blockwise

matrix inversion on JgΣ−1
g Jg yields (19).

5.2.3 Motion estimation using points and lines

Now we are ready to fuse points and lines for the
MLE of motion. Given {Pi ↔ P′i, i = 1, · · · , n} and
{Li ↔ L′i, i = 1, · · · ,m}, we formulate an MLE problem
that jointly estimates the rigid motion, point landmarks and
line landmarks. The parameter vector to be estimated is de-
fined as

r =
[
ξT,XT

1 , · · · ,XT
n,Y

T
1 , · · · ,YT

m

]T
.

Define a measurement error function

f(r) =

[
fp
fl

]
, (21)

where fp =



X1 −P1

...
Xn −Pn

T(X1) −P′1
...

T(Xn) −P′n


and fl =



η(L1,Y1)
...

η(Lm,Ym)
η(L′1,T(Y1))

...
η(L′m,T(Ym))


. The

MLE of r is obtained by solving the following problem

min
r
f(r)TΣ−1

f f(r), (22)

where Σf = diag(Σh,Σg).

Lemma 3. Under Gaussian noise assumption, the MLE of
rigid transformation ξ based on both point and line features
obtained by (22) has covariance

CH =
(
HA
h +HA

g −HB
h H

D
h

−1
HB
h

T−HB
g H

D
g

−1
HB
g

T
)−1

.

(23)

Proof. By back-propagation of covariance, the MLE of r
has covariance [9]

cov(r) =
(
JT
f Σ−1

f Jf

)−1

(24)

where Jf = ∂f
∂r

=


JA
h JB

h 0
JC
h JD

h 0

JA
g 0 JB

g

JC
g 0 JD

g

 . With

Σ−1
f = diag

(
Σ−1
h ,Σ−1

g

)
, we derive JT

f Σ−1
f Jf = HA

h + HA
g HB

h HB
g

HB
h

T
HD

h 0

HB
g

T
0 HD

g

 . Performing blockwise matrix

inversion on JT
f Σ−1

f Jf yields (23).

With Lemmas 1, 2 and 3 introduced, we are ready to
present the following theorem that justifies the benefit of
fusing point and line features for RGB-D odometry.

Theorem 1. Under Gaussian noise assumption, fusing
points and lines produces smaller uncertainty in the MLE
of pairwise motion than using each feature alone. Specifi-
cally, for the MLE covariances, CP , CL and CH , obtained
from using points, lines, and points plus lines respectively,
we have

λi(CH) < λi(CP ), λi(CH) < λi(CL), 1 ≤ i ≤ 6 (25)

where λi(·) denotes the i-th largest eigenvalue.



Proof. Let us write M1 � M2 if matrices M1 and M2 are
real symmetric and M1 −M2 is positive definite.

By comparing (23) with (14) and (19), we find CH =(
C−1
P + C−1

L

)−1
, which is equivalent to

C−1
H = C−1

P + C−1
L . (26)

It holds thatCP � 0,CL � 0 since they are both covariance
matrices, which further implies C−1

P � 0, C−1
L � 0.

As a result, we have

C−1
H − C

−1
P = C−1

L � 0 and C−1
H − C

−1
L = C−1

P � 0,

which means C−1
H � C−1

P and C−1
H � C−1

L . According to
Theorem 7.7.3 in [11],

C−1
H � C−1

P ⇔ CH ≺ CP , andC−1
H � C−1

L ⇔ CH ≺ CL,

which further leads to (25) per Corollary 7.7.4 in [11].

6. Experiments
Our system is implemented based on the software

of [8], and named Point and Line based Visual Odometry
(PLVO) [16]. The average processing time is 0.31s per
frame (640×480) on a desktop with Intel Xeon E5-2609
CPU. We evaluate PLVO under both varying and constant
lighting, and compare it with the following state-of-the-art
algorithms:

• Kpoint: a representative keypoint based visual SLAM
algorithm [8], open source software, referred to as
Kpoint here.
• DVO: a recent dense visual SLAM method [12], open

source software.
• Edge: the latest edge-based RGB-D method [5], re-

ferred to as Edge here. Edge is only compared on pub-
lic dataset because it is not open source.

We start with the evaluation under varying lighting.

6.1. Test Under Varying Lighting

To evaluate PLVO under real-world scenarios, we record
RGB-D data at 30 FPS by hand-holding a Kinect and walk-
ing in typical indoor environments, including corridors,
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Figure 3: Example of image brightness change over time
under constant/varying lighting (from Corridor-C). Here
image brightness means the average intensity of an image.

staircases and halls. The trajectory lengths, listed in Ta-
ble 1, range from 41 m to 86 m, which are sufficient for
indoor testing. At each site, we record a pair of sequences
under constant and varying lighting, respectively. Light-
ing variations are generated by constantly adjusting and/or
swinging a hand-held dimmable LED light panel (Polaroid
PL-LED350). Figure 3 shows an example of the effect of
varying lighting - while the image brightness (i.e. the av-
erage intensity of an image) varies over time even under
constant lighting, the fluctuation of image brightness is sig-
nificantly more intense under varying lighting. This brings
great challenge for feature tracking.

We enforce the starting and ending points of each se-
quence to be at the same position. As a result, we define
a trajectory endpoint drift (TED) to be the Euclidean dis-
tance between the two endpoints of an estimated trajectory,
which serves as our evaluation metric. For fair compari-
son, loop closure is disabled for Kpoint and DVO in this
test. Table 1 shows the test results, where we use bold font
to indicate the best result in each row. As Kpoint allows
using various point detectors, we report the best result for
each sequence obtained by respectively applying SIFT [15],
SURF and ORB [27]. From Table 1, we see that PLVO
achieves the least TED on the majority of sequences, under
both constant and varying lighting conditions. This clearly
demonstrates the accuracy advantage of PLVO, as well as
its robustness against lighting variations.

Table 1: TED (IN METERS)

Site (travel distance) Lighting Kpoint DVO PLVO

Corridor-A (82 m) constant 4.36 7.10 7.50
varying 16.68 15.41 12.20

Corridor-B (77 m) constant 8.25 7.56 5.28
varying 12.75 12.96 5.15

Corridor-C (86 m) constant 6.53 6.12 5.70
varying 7.30 5.93 3.46

Staircase-A (52 m) constant 4.04 2.26 2.13
varying 4.47 3.17 2.41

Staircase-B (45 m) constant 5.77 1.72 4.50
varying 3.12 3.35 6.41

Staircase-C (41 m) constant 4.51 13.87 2.74
varying 8.79 16.00 1.86

Entry-Hall (54 m) constant 1.53 1.31 1.63
varying 3.78 6.59 3.70

Auditorium (53 m) constant 5.78 2.39 1.86
varying 6.74 10.66 4.44

Classroom (45 m) constant 2.47 3.48 1.93
varying 2.58 4.73 2.16

6.2. Test on TUM Dataset Under Constant Lighting

We also evaluate our method under constant lighting us-
ing the TUM FR1 dataset [32], which is most frequently
studied in the literature. The FR1 dataset consists of 9 se-



quences with high-precision ground truth provided, mainly
covering desktop and office scenarios.

The evaluation metric used here is the relative pose error
(RPE) proposed in [32]. For a given interval ∆, the RPE at
time instant i is defined as

Ei :=
(
Q−1
i Qi+∆

)−1 (
P−1
i Pi+∆

)
, (27)

where Qi ∈ SE(3) and Pi ∈ SE(3) are the i-th ground truth
and estimated poses, respectively. Specifically, we compute
the root mean squared error (RMSE) of the translational
RPE and that of the rotational RPE over the sequence.

Table 2 contains two comparison results. On the left
part, we compare PLVO with Kpoint and Edge, where the
RPE is computed with ∆ = 1 frame in (27). The er-
rors of Kpoint are computed using their published resulting
trajectories [1]. The errors of Edge are directly excerpted
from [5]. For each sequence, the first and second rows rep-
resent the translational and rotational errors, respectively. It
shows that PLVO outperforms its counterparts. We compute
an average error over all sequences weighted by their frame
numbers. Our method achieves the smallest average errors.
Specifically, the average translational and rotational errors
of PLVO are 42.5% and 28.3% smaller than the second best
one (Edge), respectively.

Table 2: RMSE OF RPE ON TUM FR1 SEQUENCES

Seq. Kpoint Edge PLVO PLVO DVO
(#Frame) error per frame error per second

360 13.8 mm 11.2 mm 11.2 mm 84 mm 119 mm
(745) 0.63 deg 0.55 deg 0.45 deg

desk 11.7 mm 8.6 mm 10.8 mm 39 mm 30 mm
(575) 0.73 deg 0.70 deg 0.60 deg

desk2 17.6 mm 8.9 mm 11.5 mm 54 mm 55 mm
(614) 1.07 deg 0.7 deg 0.64 deg

floor 3.7 mm 15.7 mm 3.5 mm 24 mm 90 mm
(1214) 0.29 deg 0.47 deg 0.28 deg

plant 20.7 mm 6.9 mm 5.1 mm 24 mm 36 mm
(1112) 1.25 deg 0.49 deg 0.34 deg

room 13.7 mm 6.2 mm 5.3 mm 49 mm 48 mm
(1332) 0.63 deg 0.48 deg 0.36 deg

rpy 12.1 mm 7.2 mm 9.1 mm 52 mm 43 mm
(687) 0.91 deg 0.67 deg 0.63 deg

teddy 25.4 mm 36.5 mm 11.5 mm 50 mm 67 mm
(1395) 1.45 deg 0.92 deg 0.47 deg

xyz 5.8 mm 4.7 mm 5.3 mm 22 mm 24 mm
(788) 0.35 deg 0.41 deg 0.35 deg

weighted 14.4 mm 13.4 mm 7.7 mm 43 mm 58 mm
mean 0.83 deg 0.60 deg 0.43 deg

We compare PLVO with DVO separately in the right part
of Table 2 because only translational errors are reported
in [12] with its unit being m/s, i.e. ∆ = 1 s in (27). PLVO

produces an average translational error which is 34.9%
smaller than DVO, as highlighted in Abstract.

7. Conclusion and future work
To improve visual odometry robustness, we proposed

an RGB-D camera based method by fusing point and line
features. We proved that fusing these two types of fea-
tures produced smaller uncertainty in the MLE of relative
motion than using either feature type alone. Our method
was evaluated on real-world data in experiments. We com-
pared its performance with state-of-the-art methods Kpoint,
Edge and DVO, under both constant and varying lighting.
Our method exhibited both superior robustness to lighting
change and better accuracy in either settings. In the future,
we will investigate how to enhance the system by using pose
graph optimization and by detecting loop closure. Fusing
inertial sensors with an RGB-D camera is another direction
to explore.

References
[1] RGBDSLAM trajectories. https://svncvpr.

in.tum.de/cvpr-ros-pkg/trunk/rgbd_
benchmark/rgbd_benchmark_tools/data/
rgbdslam/.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (5):698–700, 1987.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up
robust features. In European Conference on Computer Vision
(ECCV), pages 404–417. Springer, 2006.

[4] N. Carlevaris-Bianco and R. M. Eustice. Learning visual
feature descriptors for dynamic lighting conditions. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2769–2776, 2014.

[5] C. Choi, A. J. Trevor, and H. I. Christensen. RGB-D edge
detection and edge-based registration. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 1568–1575, 2013.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
29(6):1052–1067, June 2007.

[7] E. Eade and T. Drummond. Edge landmarks in monocu-
lar SLAM. Image and Vision Computing, 27(5):588 – 596,
2009.

[8] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An evaluation of the RGB-D SLAM system. In
IEEE International Conference on Robotics and Automation
(ICRA), pages 1691–1696, 2012.

[9] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge Univ Pr, 2003.

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using kinect-style depth cameras for dense 3D
modeling of indoor environments. International Journal of
Robotics Research, 31(5):647–663, 2012.

https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/data/rgbdslam/
https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/data/rgbdslam/
https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/data/rgbdslam/
https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/data/rgbdslam/


[11] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge
university press, 2012.

[12] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM
for RGB-D cameras. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2100–2106,
2013.

[13] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In IEEE and ACM International Sym-
posium on Mixed and Augmented Reality (ISMAR), pages
225–234, 2007.

[14] T. Lemaire and S. Lacroix. Monocular-vision based SLAM
using line segments. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2791–2796, April
2007.

[15] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(4):91–110, November 2004.

[16] Y. Lu and D. Song. RGB-D odometry using Point and line
Features. http://telerobot.cs.tamu.edu/MFG/
rgbd/plvo, 2015.

[17] Y. Lu and D. Song. Robustness to lighting variations: An
RGB-D indoor visual odometry using line segments. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), page [Accepted], 2015.

[18] Y. Lu and D. Song. Visual navigation using heterogeneous
landmarks and unsupervised geometric constraints. IEEE
Transactions on Robotics (T-RO), 31(3):736–749, June 2015.

[19] Y. Lu, D. Song, Y. Xu, A. G. A. Perera, and S. Oh. Automatic
building exterior mapping using multilayer feature graphs. In
IEEE International Conference on Automation Science and
Engineering (CASE), pages 162–167, 2013.

[20] Y. Lu, D. Song, and J. Yi. High level landmark-based visual
navigation using unsupervised geometric constraints in lo-
cal bundle adjustment. In IEEE International Conference on
Robotics and Automation (ICRA), pages 1540–1545, 2014.

[21] M. Meilland, A. Comport, and P. Rives. Real-time dense vi-
sual tracking under large lighting variations. In British Ma-
chine Vision Conference (BMVC), volume 29, 2011.

[22] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli,
O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim,
and A. Fitzgibbon. KinectFusion: Real-time dense surface
mapping and tracking. In IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pages 127–136,
2011.

[23] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In IEEE
International Conference on Computer Vision (ICCV), pages
2320–2327, 2011.

[24] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 652–659, June 2004.

[25] A. Ranganathan, S. Matsumoto, and D. Ilstrup. Towards il-
lumination invariance for visual localization. In IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 3791–3798, 2013.

[26] C. Raposo, M. Lourenço, J. P. Barreto, and M. Antunes.
Plane-based odometry using an RGB-D camera. In British
Machine Vision Conference (BMVC), 2013.

[27] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:
An efficient alternative to SIFT or SURF. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2564–
2571, 2011.

[28] J. Smisek, M. Jancosek, and T. Pajdla. 3D with Kinect. In
IEEE International Conference on Computer Vision (ICCV)
Workshops, pages 1154–1160, 2011.

[29] P. Smith, I. Reid, and A. Davison. Real-time monocular
SLAM with straight lines. In British Machine Vision Con-
ference (BMVC), pages 17–26, 2006.

[30] F. Steinbrucker, J. Sturm, and D. Cremers. Real-time visual
odometry from dense RGB-D images. In IEEE International
Conference on Computer Vision (ICCV) Workshops, pages
719–722, 2011.

[31] H. Strasdat, J. M. Montiel, and A. J. Davison. Visual SLAM:
Why filter? Image and Vision Computing, 30(2):65–77,
2012.

[32] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM sys-
tems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 573–580, 2012.

[33] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng. Point-
plane SLAM for hand-held 3D sensors. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 5182–5189, 2013.

[34] S. Umeyama. Least-squares estimation of transformation pa-
rameters between two point patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(4):376–380,
1991.

[35] R. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall.
LSD: A fast line segment detector with a false detection con-
trol. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(4):722–732, April 2010.

[36] Z. Wang, F. Wu, and Z. Hu. MSLD: A robust descriptor for
line matching. Pattern Recognition, 42(5):941–953, 2009.

[37] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and
J. McDonald. Robust real-time visual odometry for dense
RGB-D mapping. In IEEE International Conference on
Robotics and Automation (ICRA), pages 5724–5731, 2013.

[38] Z. Zhang and O. D. Faugeras. Determining motion from
3D line segment matches: A comparative study. Image and
Vision Computing, 9(1):10–19, 1991.

http://telerobot.cs.tamu.edu/MFG/rgbd/plvo
http://telerobot.cs.tamu.edu/MFG/rgbd/plvo

